CIF: Small: Risk-Aware Resource Allocation for Robust Wireless Autonomy
CIF:小型:具有风险意识的资源分配,实现强大的无线自治
基本信息
- 批准号:2242215
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Wireless autonomous networked systems (WANS) are virtually everywhere around us, performing all kinds of often complex and pervasive data-centric manipulations, such as sensing, processing, learning, and acting (i.e., decision-making). Examples include modern wireless communication networks (e.g., based on 5G/6G, mmWave/THz technologies), drone swarms, mobile or robotic networks, unmanned aerial vehicles (UAVs), self-driving cars, and the Internet of Things (IoT). While WANS and their applications present a high potential for societal and economic growth, the operation of such systems requires not only to be efficient and driven by actual, observable data but also to meet often strict design specifications. These specifications are induced by the need to maintain performance robustness and resilience, which, in turn, translates into latency, reliability, fairness, and trustworthiness guarantees. Such criteria and constraints are fundamentally connected to intrinsic risks associated with the operation of wireless systems; those risks are due to inherent uncertainties caused by naturally occurring phenomena such as nontrivial statistical dispersion of the wireless medium as well as randomness in the behavior of multiple users and devices, often with complex and heterogeneous features and objectives. This project puts forward a new principled methodological framework for systematic risk-aware resource allocation in wireless systems, bridging the operational gap between ergodic risk neutrality and minimax conservativeness. The investigation focuses not only on formulation and dual-domain variational analysis of new constrained risk-aware resource-allocation problems but also on the development of theory as well as efficient methods for both model-based synthesis and model-free reinforcement learning of optimal risk-aware policies. It is expected that this work will establish a new paradigm in wireless systems resource allocation.Preliminary results on basic stylized resource-allocation problems - as simple as single-user power-constrained rate maximization - demonstrate clear advantages of risk-aware policies against both their ergodic (i.e., risk-neutral) and minimax counterparts. However, obtaining optimal risk-aware policies in more realistic and useful settings is nontrivial: in risk-aware problems, the role of expectations is played by more general functionals, called risk measures, for which fundamental properties of expectation - such as linearity, homogeneity, or the tower property - are generally absent. Such complications are naturally amplified within a constrained optimization setup. This project concentrates on such risk-aware problems within the context of constrained resource allocation for wireless systems and is divided into three main thrusts: 1) Lagrangian duality in risk-aware resource allocation, 2) model-based data-driven synthesis of risk-aware resource-allocation policies and 3) model-free learning of risk-aware resource-allocation policies. The principal investigator anticipates that the project will be instrumental in ameliorating inherent challenges under the risk-aware setting, such as the presence of risk-measure-based variational stochastic constraints, infinite dimensionality of resource policies, nonconvexity of random services, and channel/system-model availability, ultimately rendering risk-aware wireless-system resource allocation an intellectually accessible and computationally affordable task. The project will also be relevant to several areas beyond wireless autonomy - such as finance, economics, energy, and robotics - and may trigger new developments in the intersection of communications, information theory, statistics, and optimization, as well as inspire new tools in risk-aware and constrained learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
无线自主网络系统(WANS)几乎无处不在我们周围,执行各种通常复杂且普遍的以数据为中心的操纵,例如感测、处理、学习和行动(即,决策)。示例包括现代无线通信网络(例如,基于5G/6 G、毫米波/太赫兹技术)、无人机群、移动的或机器人网络、无人机(UAV)、自动驾驶汽车和物联网(IoT)。虽然广域网及其应用为社会和经济增长带来了巨大的潜力,但此类系统的运行不仅需要高效并由实际可观察的数据驱动,而且还需要满足通常严格的设计规范。这些规范是由保持性能鲁棒性和弹性的需求引起的,这反过来又转化为延迟,可靠性,公平性和可信度保证。这样的标准和约束从根本上连接到与无线系统的操作相关联的固有风险;这些风险是由于由自然发生的现象引起的固有不确定性,例如无线介质的非平凡统计分散以及多个用户和设备的行为的随机性,通常具有复杂和异构的特征和目标。本计画提出一个新的无线系统系统风险感知资源分配原则方法框架,弥补遍历风险中性与极小极大保守性之间的操作差距。调查的重点不仅是制定和双域变分分析新的约束风险意识的资源分配问题,但也对理论的发展,以及有效的方法,基于模型的合成和无模型的强化学习的最佳风险意识的政策。预计这项工作将建立一个新的范例,在无线系统的资源allocation.Preliminary结果基本程式化的资源分配问题-简单的单用户功率约束速率最大化-证明了明显的优势,风险意识的政策对他们的遍历(即,风险中性)和极大极小对应。然而,在更现实和更有用的环境中获得最优的风险感知策略是不平凡的:在风险感知问题中,期望的作用是由更一般的泛函,称为风险度量,其中期望的基本属性-如线性,同质性或塔属性-通常不存在。这种复杂性在约束优化设置中自然被放大。该项目集中在无线系统的资源分配约束的背景下,这样的风险意识的问题,并分为三个主要的推力:1)拉格朗日对偶在风险意识的资源分配,2)基于模型的数据驱动的综合风险意识的资源分配政策和3)无模型学习的风险意识的资源分配政策。首席研究员预计,该项目将有助于改善固有的挑战下的风险意识的设置,如存在的风险度量为基础的变分随机约束,无限维度的资源政策,随机服务的非凸性,和信道/系统模型的可用性,最终呈现风险意识的无线系统资源分配的智力和计算负担得起的任务。该项目还将涉及无线自治以外的几个领域,如金融、经济、能源和机器人技术,并可能引发通信、信息理论、统计和优化交叉领域的新发展。同时也激发了新的风险管理工具该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dionysios Kalogerias其他文献
Dionysios Kalogerias的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: CPS: Small: Risk-Aware Planning and Control for Safety-Critical Human-CPS
合作研究:CPS:小型:安全关键型人类 CPS 的风险意识规划和控制
- 批准号:
2423130 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Using Small Area Variation Analysis to Investigate Sources of Practice Variation for Febrile Infants at Risk for Invasive Bacterial Infections
使用小面积变异分析来调查有侵袭性细菌感染风险的发热婴儿的实践变异来源
- 批准号:
10588846 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Longitudinal Risk Factor Changes and Early Recognition of Cerebral Small Vessel Disease
脑小血管疾病的纵向危险因素变化和早期识别
- 批准号:
10789177 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Identification of small molecule GPVI inhibitors as anti-platelet agents for the treatment of thrombosis with minimal bleeding risk
鉴定小分子 GPVI 抑制剂作为抗血小板药物,用于治疗血栓形成且出血风险最小
- 批准号:
MR/Y50340X/1 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Research Grant
Expanding the water safety toolbox for small and decentralized drinking water systems using risk analysis, photocatalytic technologies, and pilot scale equipment
利用风险分析、光催化技术和中试设备扩展小型和分散式饮用水系统的水安全工具箱
- 批准号:
RGPIN-2021-03620 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: CPS: Small: Risk-Aware Planning and Control for Safety-Critical Human-CPS
合作研究:CPS:小型:安全关键型人类 CPS 的风险意识规划和控制
- 批准号:
2218760 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Risk Factors for Alzheimer's Disease Among Latinos: Relationships Between Cardiovascular Disease Risk, Acculturation, Small Vessel Disease, and Alzheimer's Biomarkers
拉丁裔阿尔茨海默病的危险因素:心血管疾病风险、文化适应、小血管疾病和阿尔茨海默病生物标志物之间的关系
- 批准号:
10755947 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Development of Small Area Interactive Risk Maps for Cancer Control Efforts
为癌症控制工作开发小区域交互式风险地图
- 批准号:
10416454 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Collaborative Research: CPS: Small: Risk-Aware Planning and Control for Safety-Critical Human-CPS
合作研究:CPS:小型:安全关键型人类 CPS 的风险意识规划和控制
- 批准号:
2218759 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant