Asymptotics of conservative PDE's and instability of vortex patches and filaments
保守偏微分方程的渐近性以及涡斑和细丝的不稳定性
基本信息
- 批准号:0510121
- 负责人:
- 金额:$ 3.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract, Proposal 0306398PI: Daniel P. SpirnTitle: Asymptotics of conservative PDEs and instability of vortex patches and filamentsABSTRACT: The proposed research concerns asymptotics of conservativepartial differential equations (PDE) and instability of the incompressible Euler equations in three specific areas. The first project concerns the long time behavior of vortex solutions in the nonlinear wave equation. Although recent progress has led to greater understanding of how concentrations behave in the nonlinear wave equation, very little is known about how such solutions radiate energy after long times; we will rigorously study this question. Second, we will study the nonlinear wave equation in asymptotically thin domains. Conventional wisdom holds that most PDE's with an asymptotically large aspect ratio will be well approximated simply by dropping the dimension of the PDE and relying only on the planar direction; this work will examine the precise timescales for which this practice is acceptable. The third project involves the nonlinear instability of various PDE's arising from the incompressible Euler equations, in which the governing dynamics reduce to the behavior of an interface -- such as in two-layer models and vortex patches.Often, physical phenomena are well modeled via nonlinear PDE's. Suchequations are exceedingly difficult to study, both numerically andtheoretically, yet their understanding is crucial to the further progress of many areas of physics and engineering. Two of the projects outlined above offer rigorous methods for simplifying classes of these equations, not only providing insight into the basic behavior of fluids and quantum field theory, but also greatly reducing the scope of numerical simulations. Such reductions in computational costs should aid physicists, computer scientists, and engineers. The third project endeavors to classify the stable structures in fluid dynamics, helping us to gain a better qualitative understanding of the way fluids behave.
摘要,提案0306398 PI:丹尼尔P. Spirn标题:渐近的保守偏微分方程和不稳定性的涡补丁和conventientsabstruct:拟议的研究涉及渐近的保守偏微分方程(PDE)和不稳定性的不可压缩欧拉方程在三个特定的领域。第一个项目是关于非线性波动方程涡解的长时间行为。虽然最近的进展使人们对浓度在非线性波动方程中的行为有了更深入的了解,但人们对这种溶液在长时间后如何辐射能量知之甚少;我们将严格研究这个问题。 其次,我们将研究渐近薄区域上的非线性波动方程。传统的智慧认为,大多数PDE的渐近大的纵横比将很好地近似简单地通过下降的PDE的尺寸,只依赖于平面方向,这项工作将检查精确的时间尺度,这种做法是可以接受的。第三个项目涉及各种PDE的非线性不稳定性,这些不稳定性来自不可压缩的Euler方程,在这些方程中,控制动力学归结为界面的行为--例如在两层模型和涡斑中。通常,物理现象可以通过非线性PDE很好地模拟。这样的方程是非常困难的研究,无论是数值和理论,但他们的理解是至关重要的许多领域的物理和工程的进一步发展。上面概述的两个项目提供了简化这些方程类的严格方法,不仅提供了对流体和量子场论基本行为的洞察,而且大大缩小了数值模拟的范围。这种计算成本的降低应该有助于物理学家,计算机科学家和工程师。第三个项目致力于对流体动力学中的稳定结构进行分类,帮助我们更好地定性了解流体的行为方式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Spirn其他文献
An inverse problem from condensed matter physics
凝聚态物理的反问题
- DOI:
10.1088/1361-6420/aa8e81 - 发表时间:
2016 - 期刊:
- 影响因子:2.1
- 作者:
Ru;R. Shankar;Daniel Spirn;G. Uhlmann - 通讯作者:
G. Uhlmann
Gamma-Stability and Vortex Motion in Type II Superconductors
II 型超导体中的伽玛稳定性和涡旋运动
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Matthias W. Kurzke;Daniel Spirn - 通讯作者:
Daniel Spirn
Gross-Pitaevskii Vortex Motion with Critically Scaled Inhomogeneities
具有临界尺度不均匀性的粗皮塔耶夫斯基涡运动
- DOI:
10.1137/15m1049014 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Matthias W. Kurzke;J. Marzuola;Daniel Spirn - 通讯作者:
Daniel Spirn
Minimizers near the first critical field for the nonself-dual Chern–Simons–Higgs energy
- DOI:
10.1007/s00526-008-0195-0 - 发表时间:
2008-07-12 - 期刊:
- 影响因子:2.000
- 作者:
Daniel Spirn;Xiaodong Yan - 通讯作者:
Xiaodong Yan
RECOVERING A POTENTIAL FROM CAUCHY DATA VIA COMPLEX GEOMETRICAL OPTICS SOLUTIONS
通过复杂的几何光学解决方案从柯西数据中恢复潜力
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Hoai;Daniel Spirn - 通讯作者:
Daniel Spirn
Daniel Spirn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Spirn', 18)}}的其他基金
Conference: 2024 Riviere-Fabes Symposium
会议:2024 Riviere-Fabes 研讨会
- 批准号:
2401113 - 财政年份:2024
- 资助金额:
$ 3.17万 - 项目类别:
Standard Grant
Field of Dreams: Growing a Diverse Mathematics Community
梦想领域:发展多元化的数学社区
- 批准号:
2232885 - 财政年份:2022
- 资助金额:
$ 3.17万 - 项目类别:
Standard Grant
Field of Dreams: Growing a Diverse Mathematics Community
梦想领域:发展多元化的数学社区
- 批准号:
2015550 - 财政年份:2020
- 资助金额:
$ 3.17万 - 项目类别:
Standard Grant
The Institute for Mathematics and its Applications
数学及其应用研究所
- 批准号:
1440471 - 财政年份:2015
- 资助金额:
$ 3.17万 - 项目类别:
Continuing Grant
CAREER: Mathematics of Vorticity in Ginzburg-Landau Theory and Fluids
职业:金兹堡-朗道理论和流体中的涡度数学
- 批准号:
0955687 - 财政年份:2010
- 资助金额:
$ 3.17万 - 项目类别:
Standard Grant
Some elliptic and hyperbolic problems arising in mechanics
力学中出现的一些椭圆和双曲问题
- 批准号:
0908663 - 财政年份:2009
- 资助金额:
$ 3.17万 - 项目类别:
Standard Grant
Mathematical Study of Ginzburg-Landau Asymptotics and the Stability of Fluids
Ginzburg-Landau渐近性和流体稳定性的数学研究
- 批准号:
0707714 - 财政年份:2007
- 资助金额:
$ 3.17万 - 项目类别:
Standard Grant
相似国自然基金
不定度量曲面的若干分类问题研究
- 批准号:11326068
- 批准年份:2013
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Surgery vs. conservative care for meniscal tear after unsuccessful PT: an RCT
PT 失败后半月板撕裂的手术与保守治疗:随机对照试验
- 批准号:
10579419 - 财政年份:2023
- 资助金额:
$ 3.17万 - 项目类别:
Is a 12-week intervention involving multimodal physiotherapy, photobiomodulation or a combination of multimodal physiotherapy and photobiomodulation more effective than sham photobiomodulation for the reduction of pain among those with provoked vestibulod
涉及多模式物理治疗、光生物调节或多模式物理治疗和光生物调节组合的 12 周干预是否比假光生物调节更有效地减轻前庭诱发性患者的疼痛
- 批准号:
479238 - 财政年份:2023
- 资助金额:
$ 3.17万 - 项目类别:
Operating Grants
Citizenship education policy in England under the Conservative government
保守党政府时期英格兰的公民教育政策
- 批准号:
23K02156 - 财政年份:2023
- 资助金额:
$ 3.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exploiting the GEOTRACES toolbox to characterize ocean biogeochemical processes: trace elements, isotopes and new quasi-conservative tracers.
利用 GEOTRACES 工具箱来表征海洋生物地球化学过程:微量元素、同位素和新的准保守示踪剂。
- 批准号:
2898327 - 财政年份:2023
- 资助金额:
$ 3.17万 - 项目类别:
Studentship
Conservative discontinuous Galerkin methods with implicit penalty parameters and multiscale hybridizable discontinuous Galerkin methods for PDEs
具有隐式惩罚参数的保守间断伽辽金方法和偏微分方程的多尺度可杂交间断伽辽金方法
- 批准号:
2309670 - 财政年份:2023
- 资助金额:
$ 3.17万 - 项目类别:
Standard Grant
Was the deep Atlantic dominated by southern source waters during the LGM? A conservative view based on the oxygen isotopic ratio of benthic foraminifera
末次盛冰期期间,大西洋深海是否以南部源水为主?
- 批准号:
2306931 - 财政年份:2023
- 资助金额:
$ 3.17万 - 项目类别:
Standard Grant
Home-based conservative care model for advanced kidney disease
晚期肾病的家庭保守治疗模式
- 批准号:
10535360 - 财政年份:2023
- 资助金额:
$ 3.17万 - 项目类别:
Elucidation of factors causing conservative party splits
造成保守党分裂的因素解析
- 批准号:
22K01321 - 财政年份:2022
- 资助金额:
$ 3.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Efficient Conservative High-Order Solution-Flux Domain Decomposition Methods and Local Refinements for Flows in Porous Media and Electromagnetics
多孔介质和电磁学中流动的高效保守高阶解-通量域分解方法和局部细化
- 批准号:
RGPIN-2022-04571 - 财政年份:2022
- 资助金额:
$ 3.17万 - 项目类别:
Discovery Grants Program - Individual
Theoretical Developments and Applications of Conservative Discretizations
保守离散化的理论发展与应用
- 批准号:
RGPIN-2019-07286 - 财政年份:2022
- 资助金额:
$ 3.17万 - 项目类别:
Discovery Grants Program - Individual