Some elliptic and hyperbolic problems arising in mechanics

力学中出现的一些椭圆和双曲问题

基本信息

  • 批准号:
    0908663
  • 负责人:
  • 金额:
    $ 10.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-06-01 至 2013-05-31
  • 项目状态:
    已结题

项目摘要

ChenDMS-0908663 This award is funded under the American Recovery andReinvestment Act of 2009 (Public Law 111-5). The investigatorstudies some mathematical models that occur in three specificareas: electromagnetism, solid mechanics, and fluid mechanics. In the first project on electromagnetism, the investigator andhis collaborators establish an identification of the self-dualChern-Simons vortices, as well as study the electric and magneticeffects on the stability of the dually charged vortices. Thesecond project concerns the dynamics of gel swelling. Themathematical construction of well-posedness of classical and weaksolutions is proven in the context of hyperbolic conservationlaws. The third project involves the well-posedness andstability of various nonlinear dispersive equations arising fromsolid and fluid mechanics. Methods of mathematical analysis arethe primary tool employed in the investigations. Physical phenomena are usually well modeled via nonlinearpartial differential equations. Such equations are exceedinglydifficult to study, both theoretically and numerically, yet theirunderstanding is important to further progress of many areas ofphysics and engineering. One of the objectives of this projectis to study the behavior of electrically and magnetically chargedparticles in the classical field theory. Another objectiveconcerns the study of soft condensed matter, which is relevant todrug manufacturing and bacterial motility. The third objectiveis to understand a new type of transonic wave arising in solidmechanics, which is different from the context of transonic flowin gas dynamics. The fourth objective is to study water wavesthat may occur in the ocean that are affected by the earth'srotation, and to understand how they can form tsunamis and howthey can become turbulent. The results of this projectcontribute to the identification of physical problems of greatscientific importance that offer new opportunities for theintegration of applied analysis in research and in the trainingof graduate and undergraduate students.
公司简介 该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。 电磁学研究电磁学、固体力学和流体力学三个领域的数学模型。在第一个关于电磁学的项目中,研究者和他的合作者建立了自对偶Chern-Simons涡旋的识别,并研究了电和磁对双电荷涡旋稳定性的影响。 第二个项目关注凝胶溶胀的动力学。 在双曲守恒律的背景下证明了经典解和弱解的适定性的数学构造。 第三个项目涉及固体和流体力学中各种非线性色散方程的适定性和稳定性。 数学分析方法是研究的主要工具。 物理现象通常可以通过非线性偏微分方程很好地建模。 这类方程无论从理论上还是数值上都很难研究,但对它们的理解对物理学和工程学许多领域的进一步发展都很重要。 本项目的目标之一是研究经典场论中带电和带磁粒子的行为。 另一个目标是研究软凝聚物质,这与药物制造和细菌运动有关。 第三个目标是了解固体力学中产生的一种新型跨音速波,它不同于气体动力学中的跨音速流动。 第四个目标是研究海洋中可能发生的受地球自转影响的水波,并了解它们如何形成海啸以及它们如何变得动荡。 该项目的结果有助于确定具有重要科学意义的物理问题,为研究和研究生和本科生的培训中应用分析的整合提供了新的机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Spirn其他文献

An inverse problem from condensed matter physics
凝聚态物理的反问题
  • DOI:
    10.1088/1361-6420/aa8e81
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Ru;R. Shankar;Daniel Spirn;G. Uhlmann
  • 通讯作者:
    G. Uhlmann
Gamma-Stability and Vortex Motion in Type II Superconductors
II 型超导体中的伽玛稳定性和涡旋运动
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthias W. Kurzke;Daniel Spirn
  • 通讯作者:
    Daniel Spirn
Gross-Pitaevskii Vortex Motion with Critically Scaled Inhomogeneities
具有临界尺度不均匀性的粗皮塔耶夫斯基涡运动
  • DOI:
    10.1137/15m1049014
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthias W. Kurzke;J. Marzuola;Daniel Spirn
  • 通讯作者:
    Daniel Spirn
Minimizers near the first critical field for the nonself-dual Chern–Simons–Higgs energy
Well‐Posedness and Global Behavior of the Peskin Problem of an Immersed Elastic Filament in Stokes Flow
斯托克斯流中浸没弹性丝的 Peskin 问题的适定性和全局行为

Daniel Spirn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Spirn', 18)}}的其他基金

Conference: 2024 Riviere-Fabes Symposium
会议:2024 Riviere-Fabes 研讨会
  • 批准号:
    2401113
  • 财政年份:
    2024
  • 资助金额:
    $ 10.04万
  • 项目类别:
    Standard Grant
Field of Dreams: Growing a Diverse Mathematics Community
梦想领域:发展多元化的数学社区
  • 批准号:
    2232885
  • 财政年份:
    2022
  • 资助金额:
    $ 10.04万
  • 项目类别:
    Standard Grant
Field of Dreams: Growing a Diverse Mathematics Community
梦想领域:发展多元化的数学社区
  • 批准号:
    2015550
  • 财政年份:
    2020
  • 资助金额:
    $ 10.04万
  • 项目类别:
    Standard Grant
Cross Fields and Thin Filaments
交叉场和细丝
  • 批准号:
    2009352
  • 财政年份:
    2020
  • 资助金额:
    $ 10.04万
  • 项目类别:
    Standard Grant
Abel Conference on Langlands Program
阿贝尔朗兰兹计划会议
  • 批准号:
    1841211
  • 财政年份:
    2018
  • 资助金额:
    $ 10.04万
  • 项目类别:
    Standard Grant
The Institute for Mathematics and its Applications
数学及其应用研究所
  • 批准号:
    1440471
  • 财政年份:
    2015
  • 资助金额:
    $ 10.04万
  • 项目类别:
    Continuing Grant
Vortices and Bound States
涡旋和束缚态
  • 批准号:
    1516565
  • 财政年份:
    2015
  • 资助金额:
    $ 10.04万
  • 项目类别:
    Standard Grant
CAREER: Mathematics of Vorticity in Ginzburg-Landau Theory and Fluids
职业:金兹堡-朗道理论和流体中的涡度数学
  • 批准号:
    0955687
  • 财政年份:
    2010
  • 资助金额:
    $ 10.04万
  • 项目类别:
    Standard Grant
Mathematical Study of Ginzburg-Landau Asymptotics and the Stability of Fluids
Ginzburg-Landau渐近性和流体稳定性的数学研究
  • 批准号:
    0707714
  • 财政年份:
    2007
  • 资助金额:
    $ 10.04万
  • 项目类别:
    Standard Grant
Asymptotics of conservative PDE's and instability of vortex patches and filaments
保守偏微分方程的渐近性以及涡斑和细丝的不稳定性
  • 批准号:
    0510121
  • 财政年份:
    2004
  • 资助金额:
    $ 10.04万
  • 项目类别:
    Standard Grant

相似海外基金

Modelling hyperbolic and elliptic elasticity with discontinuous coefficients using an error driven adaptive isogeometric basis
使用误差驱动的自适应等几何基础对具有不连续系数的双曲和椭圆弹性进行建模
  • 批准号:
    EP/W023202/1
  • 财政年份:
    2022
  • 资助金额:
    $ 10.04万
  • 项目类别:
    Research Grant
Nonlinear partial differential equations of mixed elliptic-hyperbolic type in geometry and related areas
几何及相关领域混合椭圆双曲型非线性偏微分方程
  • 批准号:
    2271985
  • 财政年份:
    2019
  • 资助金额:
    $ 10.04万
  • 项目类别:
    Studentship
Statistical mechanics of generalized conservative systems: self-organization by non-integrable topological constraints and non-elliptic diffusion processes
广义保守系统的统计力学:不可积拓扑约束和非椭圆扩散过程的自组织
  • 批准号:
    18J01729
  • 财政年份:
    2018
  • 资助金额:
    $ 10.04万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Mathematical analysis on hyperbolic-elliptic systems arising in semiconductor engineering and plasma physics
半导体工程和等离子体物理中出现的双曲椭圆系统的数学分析
  • 批准号:
    23740111
  • 财政年份:
    2011
  • 资助金额:
    $ 10.04万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Large time structure of coupled system of hyperbolic and elliptic equations
双曲与椭圆方程耦合系统的大时间结构
  • 批准号:
    22340027
  • 财政年份:
    2010
  • 资助金额:
    $ 10.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study on discrete subgroups of PU(1,2;C) acting on complex hyperbolic 2-space
PU(1,2;C)离散子群作用于复双曲2-空间的研究
  • 批准号:
    19540204
  • 财政年份:
    2007
  • 资助金额:
    $ 10.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Hyperbolic structures on manifolds and their deformations
流形上的双曲结构及其变形
  • 批准号:
    15540069
  • 财政年份:
    2003
  • 资助金额:
    $ 10.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on the fundamental solutions to the equations of radiating gases and its applications
辐射气体方程基本解的研究及其应用
  • 批准号:
    11440049
  • 财政年份:
    1999
  • 资助金额:
    $ 10.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The extension of holomorphic functions on locally convex spaces
全纯函数在局部凸空间上的推广
  • 批准号:
    11640196
  • 财政年份:
    1999
  • 资助金额:
    $ 10.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structure of solutions to the differential equations arising in natural phenomina
自然现象中出现的微分方程解的结构
  • 批准号:
    09640191
  • 财政年份:
    1997
  • 资助金额:
    $ 10.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了