Multigrid Methods for PDE Constrained Optimization

PDE 约束优化的多重网格方法

基本信息

  • 批准号:
    0511611
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-09-01 至 2009-08-31
  • 项目状态:
    已结题

项目摘要

The aim of this proposal is to develop, analyze and implement a class of optimization algorithms that integrate multilevel iterative solvers and so-called `all-at-once' optimization methods. Multilevel techniques provide efficient partial differential equation (PDE) solvers with regard to algorithmic complexity. Optimization methods based on the all-at-once approach, such as sequential quadratic programming (SQP) methods and primal-dual Newton interior-point methods, incorporate the PDEs as constraints into the optimization routine and hold the promise to save a considerable amount of computational work compared to methods that view the PDE solution as an implicit function of the control/design variables. This research integrates multilevel techniques and optimization algorithms to extract an adequate amount of structural information from the originally infinite dimensional optimization problem which can not be achieved when only relying on a single grid. In addition to general PDE constrained optimization algorithm development, this proposal will also contribute to the development of solution methods for two challenging real-life applications: the shape optimization of electrorheological devices and the identification of different phases in atmospheric aerosol modeling. Both applications are governed by complex systems of PDEs with nonlinearities due to, e.g., the constitutive equations or the intricate coupling conditions for the PDEs. Moreover, both optimization problems involve additional equality and inequality constraints due to design specifications or problem chemistry.This research provides new algorithmic tools for optimization problems with constraints given by systems of partial differential equations (PDEs). The solution of such problems is an important task in an increasing number real-life applications such as the shape optimization of technological devices and the identification of physical quantities in atmospheric and geophysical processes. Despite recent progress, the reliable numerical solution of these optimization problems still represents a challenging task. Challenges arise, e.g., from the complexity of the underlying PDEs, from the large scale of the optimization problems and from the interactions of the structure of the underlying application, the numerical solution of PDEs and the numerical optimization. In addition to general algorithm development, this research also tackles two important and challenging real-life PDE constrained optimization applications: the shape optimization of electrorheological devices, such as shock absorbers, and the identification of different phases in atmospheric aerosol modeling, a crucial component in environmental research.
本提案的目的是开发、分析和实现一类优化算法,该算法集成了多层迭代求解器和所谓的“一次性”优化方法。多层技术提供了有效的偏微分方程(PDE)求解算法复杂性。基于一次性方法的优化方法,如序列二次规划(SQP)方法和原始对偶牛顿内点方法,将偏微分方程作为约束纳入优化程序,与将偏微分方程解视为控制/设计变量的隐式函数的方法相比,有望节省大量的计算工作。本研究将多层技术与优化算法相结合,从原来的无限维优化问题中提取出足够的结构信息,这是仅依靠单个网格无法实现的。除了一般的PDE约束优化算法开发之外,本提案还将有助于开发两个具有挑战性的现实应用的解决方法:电流变装置的形状优化和大气气溶胶建模中不同阶段的识别。这两种应用都是由具有非线性的微分方程的复杂系统控制的,例如,微分方程的本构方程或复杂的耦合条件。此外,由于设计规范或问题化学,这两个优化问题都涉及额外的等式和不等式约束。本研究为求解具有偏微分方程组约束的优化问题提供了新的算法工具。在越来越多的实际应用中,解决这些问题是一项重要的任务,例如技术设备的形状优化以及大气和地球物理过程中物理量的识别。尽管最近取得了一些进展,但这些优化问题的可靠数值解仍然是一项具有挑战性的任务。挑战出现了,例如,从底层偏微分方程的复杂性,从大规模的优化问题,从底层应用程序的结构,偏微分方程的数值解和数值优化的相互作用。除了通用算法开发之外,本研究还解决了两个重要且具有挑战性的现实PDE约束优化应用:电流变装置(如减震器)的形状优化,以及大气气溶胶建模中不同阶段的识别,这是环境研究的关键组成部分。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ronald Hoppe其他文献

Ronald Hoppe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ronald Hoppe', 18)}}的其他基金

Collaborative Research: Numerical Simulation of the Morphosynthesis of Polycrystalline Biominerals
合作研究:多晶生物矿物形态合成的数值模拟
  • 批准号:
    1520886
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Adaptive Hybridized DG Methods for Acoustic and Electromagnetic Scattering
合作研究:声学和电磁散射的自适应混合 DG 方法
  • 批准号:
    1216857
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Reduced Order Model Approaches for Time Dependent Nonlinear PDE Constrained Optimization
协作研究:用于瞬态非线性 PDE 约束优化的降阶模型方法
  • 批准号:
    1115658
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Tuning-Free Adaptive Multilevel Discontinuous Galerkin Methods for Maxwell's Equations
合作研究:麦克斯韦方程组的免调优自适应多级间断伽辽金方法
  • 批准号:
    0810176
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Modeling, Analysis and Simulation of Surface Acoustic Wave Driven Microfluidic Biochips
表面声波驱动微流控生物芯片的建模、分析和仿真
  • 批准号:
    0707602
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Goal Oriented Mesh Adaptivity for Constrained Optimal Control and Optimization Problems
约束最优控制和优化问题的面向目标的网格自适应性
  • 批准号:
    0411403
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EPSRC-SFI: Krylov subspace methods for non-symmetric PDE problems: a deeper understanding and faster convergence
EPSRC-SFI:非对称 PDE 问题的 Krylov 子空间方法:更深入的理解和更快的收敛
  • 批准号:
    EP/W035561/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Variational and other methods for nonlinear PDE
非线性偏微分方程的变分法和其他方法
  • 批准号:
    RGPIN-2018-05691
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Variational and other methods for nonlinear PDE
非线性偏微分方程的变分法和其他方法
  • 批准号:
    RGPIN-2018-05691
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Variational and other methods for nonlinear PDE
非线性偏微分方程的变分法和其他方法
  • 批准号:
    RGPIN-2018-05691
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Variational and other methods for nonlinear PDE
非线性偏微分方程的变分法和其他方法
  • 批准号:
    RGPIN-2018-05691
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
CT image reconstruction and its implementation using PDE methods
CT图像重建及其PDE方法的实现
  • 批准号:
    523376-2018
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Investigation of Moving Mesh Methods for Gaussian Collocation PDE solvers
高斯配置偏微分方程求解器的移动网格方法研究
  • 批准号:
    524034-2018
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Localized Reduced Basis Methods for PDE-constrained Parameter Optimization
偏微分方程约束参数优化的局部化简基方法
  • 批准号:
    415818537
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Variational and other methods for nonlinear PDE
非线性偏微分方程的变分法和其他方法
  • 批准号:
    RGPIN-2018-05691
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Methods for Geometric PDE on Manifolds with Arbitrary Topology
任意拓扑流形上几何偏微分方程的数值方法
  • 批准号:
    1620366
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了