Electroactive Organic Materials and Nanoscale Patterning Strategies for Photovoltaic Devices

光伏器件的电活性有机材料和纳米级图案化策略

基本信息

  • 批准号:
    0513416
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-07-01 至 2009-06-30
  • 项目状态:
    已结题

项目摘要

Technical. This project explores new materials and strategies for improved solar cells. Society relies heavily on inexpensive sources of environmentally sound energy and faces a crisis in the years ahead. Photovoltaic devices based on easily processed conjugated organic materials are potential candidates for application as cost-effective, large area solar cells. This project investigates organic films whose morphology, absorptive and electrical properties are suitable for photovoltaic applications. The research involves collaboration between Mary Galvin's group in Materials Science and Engineering at the University of Delaware who bring expertise in polymer synthesis and characterization and Lewis Rothberg's group in Chemistry at the University of Rochester who are experienced in measuring optical and electrical properties of materials and in using them to make devices. The project aims for organic films which satisfy the following criteria: 1) Donor and acceptor moieties are separated by around 10 - 20 nm, approximately the diffusion length for typical excited states in organic solids, to facilitate charge separation. 2) Donor and acceptor materials are spatially organized into bicontinuous networks spanning the film to suppress encounters of photogenerated electrons and holes that might result in recombination. 3) Film thicknesses are relatively small to accommodate low voltage operation but the films need to absorb as much light as possible. 4) Optical absorption is strong in the red and near-infrared spectral regions to match the solar spectrum.Two approaches to nanometer scale organization of electron transporting acceptor ("n-type") and hole transporting donor ("p-type") conjugated polymers will be investigated. The first relies on novel block copolymers with covalently linked p-type and n-type blocks that will be driven to spontaneously phase segregate by incompatible side group architectures. The second relies on nanoscale organization of new discotic-like branched n-type and p-type conjugated "X" polymers using electrochemically produced porous alumina templates. Both strategies allow for separation on the optimal length scale and independent control over HOMO and LUMO positions for good separation efficiency and match to contact work functions. Galvin will also design red chromophores to address solar spectrum match and Rothberg will experiment with metal nanoparticle plasmon-enhancement of the polymer absorption. These strategies will be evaluated by characterization of film morphology, study of relevant photophysical properties, and fabrication of photovoltaic devices. Nontechnical. The project addresses fundamental materials research with strong technological relevance to electronics and photonics, and effectively integrates research and education. The project facilitates interdisciplinary education of students in a collaborative environment. The PI collaborations to date have involved exchange and training of students pursuing Ph.D. degrees in Chemistry, Materials Science, Physics and Chemical Engineering. In addition, Galvin and Rothberg both incorporate electronic materials into the lecture and laboratory curricula at the graduate and undergraduate levels. The PIs participate in community outreach through the Science Museum, girls programs, high school student involvement in research and the REU and RET programs. The research itself is a promising approach to an important technology that may help the world population to meet its energy needs in an environmentally responsible fashion.
技术.该项目探索用于改进太阳能电池的新材料和策略。社会严重依赖廉价的无害环境能源,并在未来几年面临危机。基于易于加工的共轭有机材料的光伏器件是作为具有成本效益的大面积太阳能电池应用的潜在候选者。本项目研究有机薄膜的形态,吸收和电气性能适合光伏应用。这项研究涉及特拉华州大学材料科学与工程专业的玛丽高尔文小组与罗切斯特大学化学专业的刘易斯罗斯伯格小组之间的合作,他们在测量材料的光学和电学特性以及使用它们制造设备方面经验丰富。该项目的目标是满足以下标准的有机膜:1)供体和受体部分分离约10 - 20 nm,大约是有机固体中典型激发态的扩散长度,以促进电荷分离。 2)供体和受体材料在空间上组织成跨越膜的双连续网络,以抑制可能导致复合的光生电子和空穴的相遇。 3)膜厚度相对较小以适应低电压操作,但膜需要吸收尽可能多的光。 4)光吸收在红色和近红外光谱区是强的,以匹配太阳光谱。两种方法,电子传输受体(“n型”)和空穴传输供体(“p型”)共轭聚合物的纳米级组织将进行研究。第一种依赖于具有共价连接的p型和n型嵌段的新型嵌段共聚物,所述嵌段共聚物将被不相容的侧基结构驱动以自发地相分离。第二个依赖于新的盘状分支的n-型和p-型共轭的“X”聚合物,使用电化学生产的多孔氧化铝模板的纳米级组织。这两种策略都允许在最佳长度尺度上进行分离,并独立控制HOMO和LUMO位置,以获得良好的分离效率并与接触功函数相匹配。Galvin还将设计红色发色团以解决太阳光谱匹配问题,Rothberg将实验金属纳米颗粒等离子体增强聚合物吸收。这些策略将通过薄膜形态的表征、相关物理性质的研究和光伏器件的制造来评估。 非技术性的该项目涉及与电子和光子学技术密切相关的基础材料研究,并有效地整合了研究和教育。该项目促进了学生在协作环境中的跨学科教育。迄今为止,PI的合作包括交换和培养攻读博士学位的学生。化学、材料科学、物理和化学工程学位。此外,高尔文和Rothberg都将电子材料纳入研究生和本科生的讲座和实验室课程。PI通过科学博物馆、女孩方案、高中生参与研究以及REU和RET方案参与社区外展活动。这项研究本身是一种很有希望的方法,可以帮助世界人口以对环境负责的方式满足其能源需求。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Rabolt其他文献

John Rabolt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Rabolt', 18)}}的其他基金

Multi-Scale Investigation of Metastable Phases in Sustainable Polymers
可持续聚合物亚稳相的多尺度研究
  • 批准号:
    1809977
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SusChEM: Studies of Molecular Orientation, Degradation and Thermoreversible Gelation in Environmentally Sustainable Polymers: Poly(hydroxybutyrates) and Their Copolymers
SusChEM:环境可持续聚合物中的分子取向、降解和热可逆凝胶化研究:聚(羟基丁酸酯)及其共聚物
  • 批准号:
    1407255
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Recent Advances in Electrospinning
静电纺丝的最新进展
  • 批准号:
    1419617
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ACS Symposium entitled "NMR Spectroscopy of Polymers: Solutions, Melts, and Solid State," April 6-10, 2008, New Orleans, LA
题为“聚合物核磁共振光谱:溶液、熔体和固态”的 ACS 研讨会,2008 年 4 月 6-10 日,路易斯安那州新奥尔良
  • 批准号:
    0811141
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Electric Field Effects on the Conformation, Crystal Structure, and Molecular Orientation of Polymer Micro- and Nanofibers Electrospun from Solution
电场对溶液电纺聚合物微纳米纤维构象、晶体结构和分子取向的影响
  • 批准号:
    0704970
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Structure Property Relations in a Novel Class of Electroactive Star Molecules
一类新型电活性星形分子的结构性质关系
  • 批准号:
    0513348
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Application of Dynamic Spectroscopic Methods to the Rheo-Optical Characterization of Polymers
动态光谱方法在聚合物流变光学表征中的应用
  • 批准号:
    0315461
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Symposium "NMR Spectroscopy of Polymers", at the ACS Meeting, New Orleans, LA
“聚合物核磁共振光谱”研讨会,在 ACS 会议上,路易斯安那州新奥尔良
  • 批准号:
    0321515
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NIRT: Enhancing the Properties of Nanoscale Electrospun Polymer Fibers thru Chemical Architecture, Surface Texturing Optimization Processing Protocols
NIRT:通过化学结构、表面纹理优化加工方案增强纳米级静电纺聚合物纤维的性能
  • 批准号:
    0210223
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Organic Bionics: Soft Materials to Solve Hard Problems in Neuroengineering
有机仿生学:解决神经工程难题的软材料
  • 批准号:
    FT230100154
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    ARC Future Fellowships
CAREER: Organic Materials Discovery with the Aid of Digital Crystallography
职业:借助数字晶体学发现有机材料
  • 批准号:
    2410178
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Flexible metal-organic frameworks (MOFs) for hydrogen isotope separation: insights into smart recognition of gas molecules towards materials design
用于氢同位素分离的柔性金属有机框架(MOF):深入了解气体分子对材料设计的智能识别
  • 批准号:
    24K17650
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Designing Elastic Hydrogen-bonded Crosslinked Porous Organic Materials
职业:设计弹性氢键交联多孔有机材料
  • 批准号:
    2413574
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Liquid Crystal-Templated Sequential Infiltration Synthesis of Hybrid Organic/Inorganic Materials with Multidimensional Chiral Structures
职业:具有多维手性结构的有机/无机杂化材料的液晶模板连续渗透合成
  • 批准号:
    2337740
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Dual Series Gate Configuration, Materials Design, and Mechanistic Modeling for Drift-Stabilized, Highly Sensitive Organic Electrochemical Transistor Biosensors
用于漂移稳定、高灵敏度有机电化学晶体管生物传感器的双串联栅极配置、材料设计和机械建模
  • 批准号:
    2402407
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development and integration of organic solar cell and organic transistor materials using graph-based machine learning
使用基于图形的机器学习开发和集成有机太阳能电池和有机晶体管材料
  • 批准号:
    23H02064
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Layered molecular two-dimensional materials based on metal-organic polyhedra
基于金属有机多面体的层状分子二维材料
  • 批准号:
    22KF0219
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Fabrication of metal-organic soft materials based on quantitative analysis of hierarchical structures
基于分级结构定量分析的金属有机软材料制备
  • 批准号:
    22KJ1784
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了