SusChEM: Studies of Molecular Orientation, Degradation and Thermoreversible Gelation in Environmentally Sustainable Polymers: Poly(hydroxybutyrates) and Their Copolymers
SusChEM:环境可持续聚合物中的分子取向、降解和热可逆凝胶化研究:聚(羟基丁酸酯)及其共聚物
基本信息
- 批准号:1407255
- 负责人:
- 金额:$ 48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL ABSTRACT: Plastic packaging is usually disposed of in landfills or incinerated, adding to the air pollution which is endemic in many regions of the world. Many third world countries, too poor to recycle, have few sanitary landfills and few facilities for incineration. Most of the current polymers used for packaging are not biodegradable and persist in landfills for many decades. These problems could be addressed if packaging materials were based on biodegradable polymers from renewable sources. However, polymers that are biodegradable often suffer from reduced mechanical properties in terms of strength and flexibility. This research group is trying to address these issues using polymers that are biodegradable and biosynthetically produced. This interdisciplinary research on the study of chemical and biological degradation of a class of sustainable polymers, poly(hydroxybutyrates) (PHB) and their random copolymers, combines approaches involving chemical synthesis, novel processing using an electrospinning technique, as well as characterization of the resulting materials using new combinations of instrumentation. The group will assess the effects of randomly incorporating a second component into the PHB polymer molecules in order to improve their mechanical properties while maintaining the rate of degradation and the nature of the degradation products. The ultimate goal is a sustainable polymeric material that is inexpensive, processable, and degrades rapidly (30-45 days) in landfills, while providing improved properties of strength and flexibility for packaging. If successful, this approach to the development of optimized, sustainable, and biodegradable polymers may be extended beyond the PHB systems and have significant impact on development and production of new sustainable materials.TECHNICAL ABSTRACT:Poly(hydroxybutyrate) (PHB) is a biodegradable, aliphatic polyester that can be produced by chemical processes or bacterial fermentation. The facts that it can be produced biologically with the properties of a thermoplastic and is naturally biodegradable have made it a subject of research in many industrial and academic laboratories worldwide. However, bacterially produced PHB results in a polymer that is brittle and lacks flexibility. In order to modify these properties 3-hydroxyhexanoate (3HHx) has been added as a co-monomer and these new materials, referred to as PHB-HHx, exhibit a significantly reduced crystalline content, resulting in improved mechanical properties and processability. While this approach definitely leads to important improvements, there is always the question of concomitant changes in other important properties like biodegradability. If the degradability of these sustainable, thermoplastic polymers can be optimized so as to enzymatically degrade rapidly (30-45 days) in landfills, this would be an extremely important contribution to the environment and society with impacts on land use, soil contamination, and the economics of material disposal. It is this hypothesis that researchers will explore in this project using a wide range of copolymers with varying amounts of 3HHX comonomer (0 mol% (pure PHB), 3.9 mol%, 5.8 mol%, 6.2 mol%, 7.6 mol%, 9.4 mol%, 11.9 mol%, and 13 mol%).In addition, the researchers will explore the correlation between structure, processing, and chain orientation/crystallinity, and test the hypothesis that improved chain orientation in electrospun nanofibers can increase modulus and tenacity even while crystallinity is disrupted by appropriate comonomer compositions. They will also explore alternate processing approaches to produce a fibrous structure similar to an electrospun membrane without significantly changing desired properties. Thermoreversible gelation, which has been discovered for PHB and PHB-HHx, offers a route to a non-woven fiber-like structure when gelation is followed by lyophilization. The researchers hypothesize that this processing method may significantly improve throughput while maintaining structures with the same range of properties as electrospun membranes.
非技术摘要:塑料包装通常被丢弃在垃圾填埋场或焚烧,增加了世界许多地区普遍存在的空气污染。许多第三世界国家太穷,无法回收,几乎没有卫生垃圾填埋场和焚烧设施。目前用于包装的大多数聚合物都不是可生物降解的,在垃圾填埋场中持续存在数十年。如果包装材料以可再生来源的可生物降解聚合物为基础,这些问题就可以得到解决。然而,可生物降解的聚合物在强度和柔韧性方面往往会降低机械性能。这个研究小组正试图使用可生物降解和以生物合成方式生产的聚合物来解决这些问题。这项关于一类可持续聚合物--聚羟基丁酸酯(PHB)及其无规共聚物的化学和生物降解研究的跨学科研究,结合了化学合成、使用静电纺丝技术的新加工以及使用新的仪器组合对所得到的材料进行表征的方法。该小组将评估在PHB聚合物分子中随机加入第二组分的效果,以改善其机械性能,同时保持降解速度和降解产物的性质。最终目标是一种可持续的聚合物材料,价格低廉,可加工,在垃圾填埋场中迅速降解(30-45天),同时为包装提供更好的强度和弹性性能。如果成功,这种开发优化的、可持续的和可生物降解的聚合物的方法可能会扩展到PHB系统之外,并对新的可持续材料的开发和生产产生重大影响。技术摘要:聚羟基丁酸酯(PHB)是一种可生物降解的脂肪族聚酯,可以通过化学过程或细菌发酵来生产。它可以通过生物方式生产,具有热塑性塑料的特性,并且是自然可生物降解的,这一事实使其成为世界各地许多工业和学术实验室的研究课题。然而,细菌产生的PHB导致聚合物脆性和缺乏弹性。为了改善这些性能,添加了3-羟基己酸酯(3HHx)作为共聚单体,这些新材料(称为PHB-HHx)的结晶含量显著减少,从而改善了机械性能和加工性。虽然这种方法肯定会带来重要的改进,但随之而来的是其他重要特性的变化,如生物降解性。如果这些可持续的热塑性聚合物的降解性能够得到优化,以便在垃圾填埋场中快速酶促降解(30-45天),这将是对环境和社会的极其重要的贡献,对土地利用、土壤污染和材料处置的经济性产生影响。在这个项目中,研究人员将使用不同量的3HHX共聚单体(0mol%(纯PHB)、3.9mol%、5.8mol%、6.2mol%、7.6mol%、9.4mol%、11.9mol%和13mol%)来探索这一假设。此外,研究人员将探索结构、加工和链取向/结晶度之间的相关性,并测试改善电纺纳米纤维的链取向度可以增加弹性系数和韧性的假设,即使适当的共聚单体组成破坏了结晶度。他们还将探索替代的加工方法,以生产类似于电纺薄膜的纤维结构,而不会显著改变所需的性能。已发现的PHB和PHB-HHx的热可逆凝胶化,提供了一条在凝胶化之后进行冷冻干燥时形成非织造纤维状结构的途径。研究人员推测,这种加工方法可以显著提高产量,同时保持结构具有与电纺薄膜相同的性能范围。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Rabolt其他文献
John Rabolt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Rabolt', 18)}}的其他基金
Multi-Scale Investigation of Metastable Phases in Sustainable Polymers
可持续聚合物亚稳相的多尺度研究
- 批准号:
1809977 - 财政年份:2018
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
ACS Symposium entitled "NMR Spectroscopy of Polymers: Solutions, Melts, and Solid State," April 6-10, 2008, New Orleans, LA
题为“聚合物核磁共振光谱:溶液、熔体和固态”的 ACS 研讨会,2008 年 4 月 6-10 日,路易斯安那州新奥尔良
- 批准号:
0811141 - 财政年份:2008
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Electric Field Effects on the Conformation, Crystal Structure, and Molecular Orientation of Polymer Micro- and Nanofibers Electrospun from Solution
电场对溶液电纺聚合物微纳米纤维构象、晶体结构和分子取向的影响
- 批准号:
0704970 - 财政年份:2007
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
Electroactive Organic Materials and Nanoscale Patterning Strategies for Photovoltaic Devices
光伏器件的电活性有机材料和纳米级图案化策略
- 批准号:
0513416 - 财政年份:2005
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
Structure Property Relations in a Novel Class of Electroactive Star Molecules
一类新型电活性星形分子的结构性质关系
- 批准号:
0513348 - 财政年份:2005
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
Application of Dynamic Spectroscopic Methods to the Rheo-Optical Characterization of Polymers
动态光谱方法在聚合物流变光学表征中的应用
- 批准号:
0315461 - 财政年份:2003
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
Symposium "NMR Spectroscopy of Polymers", at the ACS Meeting, New Orleans, LA
“聚合物核磁共振光谱”研讨会,在 ACS 会议上,路易斯安那州新奥尔良
- 批准号:
0321515 - 财政年份:2003
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
SGER: Amplification & Detection of Trace Quantities of Biological and Chemical Agents using High Surface Area Membranes and an Ultrafast Planar Array IR Spectrograph
SGER:放大
- 批准号:
0346454 - 财政年份:2003
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
NIRT: Enhancing the Properties of Nanoscale Electrospun Polymer Fibers thru Chemical Architecture, Surface Texturing Optimization Processing Protocols
NIRT:通过化学结构、表面纹理优化加工方案增强纳米级静电纺聚合物纤维的性能
- 批准号:
0210223 - 财政年份:2002
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
相似海外基金
Molecular Genetic Studies of Schizophrenia: Understanding Treatment Resistance and Outcomes to Inform Precision Psychiatry.
精神分裂症的分子遗传学研究:了解治疗耐药性和结果,为精准精神病学提供信息。
- 批准号:
MR/Y004094/1 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Advancing biocultural and molecular studies of agriculturalist diet and nutrition.
博士论文研究:推进农业饮食和营养的生物文化和分子研究。
- 批准号:
2347683 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
In-depth molecular studies of dynein transport in the RPE
RPE 中动力蛋白运输的深入分子研究
- 批准号:
10573020 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Studies of protective effect of extracellular vesicles on retina and its molecular mechanisms
细胞外囊泡对视网膜的保护作用及其分子机制研究
- 批准号:
23K09051 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structure, function and molecular interaction studies of membrane proteins important in mitochondrial energy metabolism
线粒体能量代谢中重要的膜蛋白的结构、功能和分子相互作用研究
- 批准号:
2869890 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Studentship
Platelets on Chip: Studies of Mechanobiology of Platelet-Mediated Thrombosis Enabled by Molecular Fluorescence Sensors Grafted inside Microfluidic Chips
芯片上的血小板:通过微流控芯片内移植的分子荧光传感器实现血小板介导的血栓形成的力学生物学研究
- 批准号:
2204447 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
AFM and Optical Studies of Boron Nitride and Graphene Grown By High Temperature Molecular Beam Epitaxy
高温分子束外延生长氮化硼和石墨烯的 AFM 和光学研究
- 批准号:
2884050 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Studentship
Studies on virus-driven molecular ecological mechanisms controlling the termination of red tide
病毒驱动控制赤潮终止的分子生态机制研究
- 批准号:
22KJ2366 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Atomic-level Imaging and Molecular Beam Scattering Studies of Interfacial Chemical Dynamics
界面化学动力学的原子级成像和分子束散射研究
- 批准号:
2313365 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Structural and molecular studies of endocrine disruption in Australia fauna
澳大利亚动物群内分泌干扰的结构和分子研究
- 批准号:
DP230100609 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Discovery Projects