High Performance Rough Sets Data Analysis in Data Mining
数据挖掘中的高性能粗糙集数据分析
基本信息
- 批准号:0514750
- 负责人:
- 金额:$ 13.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-15 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Data mining (aka Knowledge Discovery in Databases, KDD) is a procedure to extract previously unknown and potentially useful information or pattern from huge data sets. KDD is usually a multiphase process involving numerous steps such as data preparation, data preprocessing, feature selection, rule induction, knowledge evaluation and deployment etc. Many novel data mining and learning algorithms have been developed, though vigorously, under rather add hoc and vague concepts. These algorithms, in most cases, are individual creations of different researchers, without much common methodological and fundamental framework. In other words, great majority of work in data mining is focused on algorithm development while neglecting the studies of fundamental theoretical issues concerning data, inter-data relationships, and quality of the implicit information hidden in the data or data redundancies. Thus, it is not easy to fully understand and evaluate how individual phase influences each other and the impact of each phase on the whole knowledge discovery process. For further development and breakthroughs in data mining and learning algorithms, a deep examination of its foundation is necessary. The central goal of the proposed research is to develop a unified rough set based data mining framework to explore various fundamental issues of data mining and learning algorithms. It aims to present the analytical capabilities of the methodology of rough sets in the context of data mining methodologies, techniques and applications. It will provide a unified framework to help better understand the whole KDD process.Intellectual merit: Rough set theory is particularly suited to reasoning about imprecise or incomplete data and discovering relationships in the data. The simplicity and mathematical clarity of rough set theory makes it attractive for both theoreticians and application-oriented researchers. The main advantage of rough set theory is that it does not require any preliminary or additional information about the data, such as probability in statistics, basic probability assignment in Dempster-Shafer theory or the value of membership in fuzzy set theory. Rough set theory constitutes a sound basis for KDD and can be used in different phases of the KDD process. In particular, the formal techniques of rough set theory lead to many novel and promising breakthrough methods and algorithms for attribute functional, orpartial functional dependencies, their discovery, analysis, and characterization, feature election, feature extraction, data reduction, decision rule generation, and pattern extraction (templates, association rules) etc., which are the fundamental issues of the KDD process. Rough set theory represents a new innovative approach and can lead to the development of new learning algorithms to create novel uses and breakthroughs of data mining techniques.Broader impacts: The proposed collaborative project is interdisciplinary in nature. It will synthesize often-disparate work in data mining, rough set theory and high performance computing. The PIs' strong multidisciplinary research collaboration experience will lead to widespread awareness and impact of the proposed research to rough set, data mining and high performance computing community. It will design and develop a wide-range of novel data mining algorithms and methods including data reduction, rule induction and classification ensemble in one unified framework to better understand the whole KDDprocess. These algorithms and methods will significantly extend the application scope of data mining techniques and rough set theory and will result in the improved understanding of issues involved in designing efficient and innovative data mining and learning algorithms and methods. The proposed research will integrate tightly with teaching activities, the research results will be developed into undergraduate and graduate courses and research projects. Part of this approach includes the development of new cross-disciplinary courses that bring together computer science and mathematics for the understanding of principle and methods of theoretical foundations of data mining and rough set theory. The integration will help with training students in the issues involved in the rough set theory, design and implementation of novel data mining methods and algorithms, high performance computing. The active participation of students will allow for significant exposure to the latest research in datamining.
数据挖掘(又名数据库中的知识发现,KDD)是从大量数据集中提取以前未知的和潜在有用的信息或模式的过程。KDD通常是一个多阶段的过程,包括许多步骤,如数据准备、数据预处理、特征选择、规则归纳、知识评估和部署等。许多新的数据挖掘和学习算法已经被开发出来,尽管它们是在相当特殊和模糊的概念下发展起来的。在大多数情况下,这些算法是不同研究人员的个人创造,没有多少共同的方法和基本框架。换句话说,数据挖掘的大部分工作都集中在算法开发上,而忽略了对数据、数据间关系以及隐藏在数据中隐含信息的质量或数据冗余等基本理论问题的研究。因此,很难充分理解和评估各个阶段之间的相互影响以及各个阶段对整个知识发现过程的影响。为了进一步发展和突破数据挖掘和学习算法,有必要对其基础进行深入研究。提出的研究的中心目标是开发一个统一的基于粗糙集的数据挖掘框架,以探索数据挖掘和学习算法的各种基本问题。它旨在展示粗糙集方法在数据挖掘方法、技术和应用的背景下的分析能力。它将提供一个统一的框架来帮助更好地理解整个KDD过程。智力优势:粗糙集理论特别适合于对不精确或不完整的数据进行推理,并发现数据中的关系。粗糙集理论的简单性和数学上的清晰性使它对理论家和面向应用的研究人员都具有吸引力。粗糙集理论的主要优点是它不需要任何关于数据的初步或附加信息,如统计学中的概率,Dempster-Shafer理论中的基本概率分配或模糊集理论中的隶属度值。粗糙集理论为知识开发提供了良好的基础,可以应用于知识开发过程的各个阶段。特别是,粗糙集理论的形式化技术导致了许多新的和有前途的突破性方法和算法,用于属性功能,或部分功能依赖,它们的发现,分析和表征,特征选择,特征提取,数据约简,决策规则生成和模式提取(模板,关联规则)等,这是KDD过程的基本问题。粗糙集理论代表了一种新的创新方法,可以导致新的学习算法的发展,从而创造数据挖掘技术的新用途和突破。更广泛的影响:拟议的合作项目本质上是跨学科的。它将综合数据挖掘、粗糙集理论和高性能计算中经常不同的工作。pi强大的多学科研究合作经验将导致对粗糙集、数据挖掘和高性能计算社区的广泛认识和影响。它将设计和开发广泛的新型数据挖掘算法和方法,包括数据约简,规则归纳和分类集成在一个统一的框架中,以更好地理解整个kdd过程。这些算法和方法将大大扩展数据挖掘技术和粗糙集理论的应用范围,并将导致对设计高效和创新的数据挖掘和学习算法和方法所涉及的问题的更好理解。建议的研究将与教学活动紧密结合,研究成果将发展成本科和研究生课程和研究项目。这种方法的一部分包括开发新的跨学科课程,将计算机科学和数学结合起来,以理解数据挖掘和粗糙集理论基础的原理和方法。整合将有助于训练学生在粗糙集理论、设计和实现新的数据挖掘方法和算法、高性能计算方面的问题。学生的积极参与将使他们有机会接触到最新的数据挖掘研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yi Pan其他文献
Development of touch sensor with optical positional sensor
开发带有光学位置传感器的触摸传感器
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Aikawa;Y.;Herbst;E.;Roberts;H.;Caselli P;Yasuhiro Watanabe;D.Tokumoti;Yi Pan;Yoshihiro Tabuchi - 通讯作者:
Yoshihiro Tabuchi
A self-assembled bisoxazoline/Pd composite microsphere as an excellent catalyst for Suzuki–Miyaura coupling reactions
自组装双恶唑啉/Pd复合微球作为铃木-宫浦偶联反应的优异催化剂
- DOI:
10.1039/c5gc01551k - 发表时间:
2016-02 - 期刊:
- 影响因子:9.8
- 作者:
Junke Wang;Yingxiao Zong;Xicun Wang;Yulai Hu;Guoren Yue;Yi Pan - 通讯作者:
Yi Pan
Estimating Typhoon Waves based on the Modified ECMWF ERA-5 Wind Data
基于修改后的 ECMWF ERA-5 风数据估算台风波
- DOI:
10.2112/si95-228.1 - 发表时间:
2020-03 - 期刊:
- 影响因子:0
- 作者:
Jiangxia Li;Yi Pan;Yongping Chen;Shunqi Pan - 通讯作者:
Shunqi Pan
Novel cryopreservation medium for enhanced stability of T cells at −80°C
新型冷冻保存介质可增强 T 细胞在 -80°C 下的稳定性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
WenXuan Zhou;Chen Wang;Yao Shi;Yi Pan;XiaDuo Meng;XunLei Kang;Xu Han - 通讯作者:
Xu Han
Examining Graph Properties of Unstructured Peer-to-Peer Overlay Topology
检查非结构化点对点覆盖拓扑的图属性
- DOI:
10.1109/gi.2007.4301424 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Chao Xie;Sijie Guo;R. Rejaie;Yi Pan - 通讯作者:
Yi Pan
Yi Pan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yi Pan', 18)}}的其他基金
Collaborative Research: Real World Relevant Security Labware for Mobile Threat Analysis and Protection Experience
协作研究:用于移动威胁分析和保护体验的现实世界相关安全实验室软件
- 批准号:
1244665 - 财政年份:2013
- 资助金额:
$ 13.75万 - 项目类别:
Standard Grant
Capacity Building: Collaborative Research: Integrated Learning Environment for Cyber Security of Smart Grid
能力建设:协作研究:智能电网网络安全的集成学习环境
- 批准号:
1303359 - 财政年份:2013
- 资助金额:
$ 13.75万 - 项目类别:
Standard Grant
Travel Awards for The 2011 IEEE International Conference on Bioinformatics & Biomedicine
2011 年 IEEE 国际生物信息学会议旅行奖
- 批准号:
1142717 - 财政年份:2011
- 资助金额:
$ 13.75万 - 项目类别:
Standard Grant
(NECO) Collaborative Research: Reliability Modeling for Large-Scale Networking System (LSNS), and Self-Improvement in LSNS
(NECO) 合作研究:大规模网络系统 (LSNS) 的可靠性建模以及 LSNS 的自我改进
- 批准号:
0831634 - 财政年份:2008
- 资助金额:
$ 13.75万 - 项目类别:
Standard Grant
Transmembrane Protein Segment Prediction and Understanding based on Machine Learning Methods
基于机器学习方法的跨膜蛋白片段预测与理解
- 批准号:
0646102 - 财政年份:2006
- 资助金额:
$ 13.75万 - 项目类别:
Standard Grant
相似国自然基金
基于Rough Path理论的分布依赖随机微分方程的平均化原理研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
Rough随机波动率模型的金融应用及算法研究
- 批准号:
- 批准年份:2020
- 资助金额:52 万元
- 项目类别:面上项目
带跳的 rough path 理论及其应用
- 批准号:11901104
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
基于Rough集的坚硬顶板条件下煤与瓦斯突出预警机制研究
- 批准号:51874121
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
扩展的模糊逻辑与基于蕴涵算子的Rough逻辑
- 批准号:61175044
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
基于Rough集的“恐伤肾”小鼠分子免疫机制研究
- 批准号:81060316
- 批准年份:2010
- 资助金额:23.0 万元
- 项目类别:地区科学基金项目
基于Rough集的增量学习方法研究
- 批准号:60503022
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
基于Rough集理论的不确定性信息处理研究
- 批准号:60373111
- 批准年份:2003
- 资助金额:20.0 万元
- 项目类别:面上项目
Rough逻辑归结原理和归结策略的研究
- 批准号:60173054
- 批准年份:2001
- 资助金额:18.0 万元
- 项目类别:面上项目
算子Rough逻辑及其在数据发掘上应用的研究
- 批准号:69773001
- 批准年份:1997
- 资助金额:8.0 万元
- 项目类别:面上项目
相似海外基金
Sentiment Analysis of Microblog data with Tolerance Rough Sets
容忍粗糙集的微博数据情感分析
- 批准号:
551217-2020 - 财政年份:2020
- 资助金额:
$ 13.75万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Analysis of Operators on Rough Sets
职业:粗糙集算子分析
- 批准号:
2049477 - 财政年份:2020
- 资助金额:
$ 13.75万 - 项目类别:
Continuing Grant
Stochastic Processes on Rough Spaces and Geometric Properties of Random Sets
粗糙空间上的随机过程和随机集的几何性质
- 批准号:
1951577 - 财政年份:2019
- 资助金额:
$ 13.75万 - 项目类别:
Continuing Grant
Stochastic Processes on Rough Spaces and Geometric Properties of Random Sets
粗糙空间上的随机过程和随机集的几何性质
- 批准号:
1855349 - 财政年份:2019
- 资助金额:
$ 13.75万 - 项目类别:
Continuing Grant
CAREER: Analysis of Operators on Rough Sets
职业:粗糙集算子分析
- 批准号:
1847301 - 财政年份:2019
- 资助金额:
$ 13.75万 - 项目类别:
Continuing Grant
Development of a Kansei data mining system based on random rough sets
基于随机粗糙集的感性数据挖掘系统的开发
- 批准号:
23700244 - 财政年份:2011
- 资助金额:
$ 13.75万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Speaker-independent Speech Recognition Using Rough Sets
使用粗糙集的与说话人无关的语音识别
- 批准号:
358430-2008 - 财政年份:2010
- 资助金额:
$ 13.75万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A New Stage of Rough Sets Incomplete Information Analysis and Its application t Data Mining
粗糙集不完全信息分析的新阶段及其在数据挖掘中的应用
- 批准号:
22500204 - 财政年份:2010
- 资助金额:
$ 13.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Speaker-independent Speech Recognition Using Rough Sets
使用粗糙集的与说话人无关的语音识别
- 批准号:
358430-2008 - 财政年份:2009
- 资助金额:
$ 13.75万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Speaker-independent Speech Recognition Using Rough Sets
使用粗糙集的与说话人无关的语音识别
- 批准号:
358430-2008 - 财政年份:2008
- 资助金额:
$ 13.75万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral














{{item.name}}会员




