Integer Linear Algebra, LinBox Applications and Extensions
整数线性代数、LinBox 应用和扩展
基本信息
- 批准号:0515197
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-08-01 至 2010-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PROPOSAL: 0515197INSTITUTION: U of DelawarePI: Saunders, B. DavidTITLE: Integer Linear Algebra, LinBox Applications and ExtensionsABSTRACTLinear algebra lies at the core of computation and modeling in science and engineering. Almost all of it done today is numeric linear algebra in which the data are measured values and the results are approximate and subject to varying amounts of error. This research addresses EXACT linear algebra computation in which the data are whole numbers and the results are exact - computed without any error whatsoever. In the past two decades, significant new methods have arisen and are enabling solution of large problem instances where it could not before be dreamed of. We will broaden the range of problem types solvable by the new methods, devise further new and better methods, and, above all, provide high performance implemented programs in a software library, LinBox, readily available to all. We will study (1) extremely sparse systems, with just a few nonzero entries per matrix row, (2) symmetric matrices: matrix signature and positive definiteness, (3) hybrid algorithms for Smith normal forms. The corresponding application areas are image rendering, study of symmetry (Lie groups), and combinatorics. The intellectual heart of the activity lies in two major areas. First, we probe the performance limits for sparse linear algebra, striving to create algorithms which are optimal, in the sense of computational complexity. This requires both novel algorithms and new insights concerning the absolute limits to speedup. Secondly, we program the library in a way providing for both high performance and genericity with respect to the many variants of matrix representation and underlying arithmetic. Thus the implementation elegantly solves the vexing problem of software reusability. The fact that our programs are not simply academic demonstrations is very important, giving the work much broader impact. Mathematicians and scientists may now use LinBox and for the first time perform exact linear algebra computations on large problems.
提案:0515197机构:特拉华大学PI:Saunders,B. David标题:线性代数,LinBox应用程序和扩展摘要线性代数是科学和工程中计算和建模的核心。今天所做的几乎都是数值线性代数,其中的数据是测量值,结果是近似的,并受到不同数量的误差。该研究解决了精确线性代数计算,其中数据是整数,结果是精确计算,没有任何错误。在过去的二十年中,出现了重要的新方法,并使解决大型问题的情况下,它以前不能梦想。我们将扩大新方法可解决的问题类型的范围,进一步设计新的和更好的方法,最重要的是,在软件库LinBox中提供高性能的实现程序,随时提供给所有人。我们将研究(1)极稀疏系统,每个矩阵行只有几个非零元素,(2)对称矩阵:矩阵签名和正定性,(3)Smith标准形的混合算法。相应的应用领域是图像渲染,对称性研究(李群)和组合学。活动的智力核心在于两个主要领域。首先,我们探索稀疏线性代数的性能限制,努力创建算法是最佳的,在这个意义上的计算复杂性。这需要新的算法和新的见解有关的绝对限制加速。其次,我们的程序库的方式提供了高性能和通用性方面的矩阵表示和底层算法的许多变种。因此,该实现优雅地解决了软件可重用性的烦恼问题。我们的项目不仅仅是学术演示,这一事实非常重要,使这项工作产生了更广泛的影响。数学家和科学家现在可以使用LinBox,并首次在大型问题上执行精确的线性代数计算。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
B. David Saunders其他文献
A symmetric numerical range for matrices
- DOI:
10.1007/bf01396569 - 发表时间:
1976-03-01 - 期刊:
- 影响因子:2.200
- 作者:
B. David Saunders;Hans Schneider - 通讯作者:
Hans Schneider
B. David Saunders的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('B. David Saunders', 18)}}的其他基金
AF: Small: Collaborative Research: High Performance Exact Linear Algebra Kernels
AF:小型:协作研究:高性能精确线性代数内核
- 批准号:
1018063 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
CITADel - CyberInfrastructure Technology Advancement for Delaware
CITADel - 特拉华州网络基础设施技术进步
- 批准号:
0963399 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
Symbolic-Numeric Linear Algebra Computation
符号数值线性代数计算
- 批准号:
0830130 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: DefCOM - Distributed Defense against DDoS Attacks
协作研究:DefCOM - 针对 DDoS 攻击的分布式防御
- 批准号:
0430228 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Standard Grant
ITR/ASC: Collaborative Research - Linbox: A Generic Library for Seminumeric Black Box Linear Algebra
ITR/ASC:合作研究 - Linbox:半数值黑盒线性代数通用库
- 批准号:
0112807 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Standard Grant
Exact Computation in Sparse Linear Algebra
稀疏线性代数中的精确计算
- 批准号:
0098284 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Standard Grant
U.S.-France Cooperative Research: Theory and Practice of Parallel Linear Algebra in Computer Algebra
美法合作研究:计算机代数中并行线性代数的理论与实践
- 批准号:
9726763 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Standard Grant
East Coast Computer Algebra Day, University of Delaware, Newark, Delaware, April 8, l995
东海岸计算机代数日,特拉华大学,特拉华州纽瓦克,l995 年 4 月 8 日
- 批准号:
9505363 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Systems and Algorithms for Paralleland Distributed Symbolic Algebraic Computation
协作研究:并行分布式符号代数计算系统和算法
- 批准号:
9123666 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
- 批准号:
2338655 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
DMS-EPSRC: Certifying Accuracy of Randomized Algorithms in Numerical Linear Algebra
DMS-EPSRC:验证数值线性代数中随机算法的准确性
- 批准号:
EP/Y030990/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
III: Medium: Linear Algebra Operators in Databases to Support Analytic and Machine-Learning Workloads
III:中:数据库中的线性代数运算符支持分析和机器学习工作负载
- 批准号:
2312991 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
DMS-EPSRC:Certifying Accuracy of Randomized Algorithms in Numerical Linear Algebra
DMS-EPSRC:验证数值线性代数中随机算法的准确性
- 批准号:
2313434 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Developing Virtual Reality-Mediated Representational Tools for Supporting and Enhancing Deep Mathematical Understanding of Linear Algebra Relationships
开发虚拟现实介导的表示工具来支持和增强对线性代数关系的深入数学理解
- 批准号:
2315756 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Elements: A Cyberlaboratory for Randomized Numerical Linear Algebra
合作研究:Elements:随机数值线性代数网络实验室
- 批准号:
2309445 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Development of an Inquiry-based curriculum for linear algebra as a subject-specialized course in mathematics teacher training
作为数学教师培训学科专业课程的线性代数探究式课程的开发
- 批准号:
23K02415 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Elements: A Cyberlaboratory for Randomized Numerical Linear Algebra
合作研究:Elements:随机数值线性代数网络实验室
- 批准号:
2309446 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
- 批准号:
2152661 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Exact linear algebra, polynomial systems and applications of computer algebra
精确线性代数、多项式系统及计算机代数应用
- 批准号:
RGPIN-2020-04276 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual