Collaborative Research: Super-fast Direct Sparse Solvers
协作研究:超快速直接稀疏求解器
基本信息
- 批准号:0515320
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-08-01 至 2008-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACT0515320Shivkumar ChandrasekaranU of California - SBCollaborative Research: Super-fast direct sparse solversThe numerical solution of partial differential equations (PDE) is a key enabling technology in alldisciplines of engineering and science. Nevertheless the numerical solution of three-dimensionalPDEs is a critical bottle-neck that prevents this potential from being realized. This proposaladvances techniques that can be used to overcome this bottle-neck. Discretized elliptic PDEs are normally solved by iterative schemes since the fill-in during sparse Gaussian elimination is excessive. This proposal observes that the fill-in, in a certain ordering, has low numerical rank in the off-diagonal blocks, and that this structure can be computed and exploited to construct direct solvers that are linear in the number of unknowns. The outcome of the proposed research has the potential to create a novel class of pre-conditioners that in conjunction with iterative solvers can become powerful weapons for solving difficult elliptic PDEs.The intellectual merit of the proposal stems from the complicated structure in the fill-in thatmust be first inferred from regularity results for Green's functions in elliptic PDE theory and thenconverted into effective linear-time algorithms to both capture the structure on the fly during sparseGaussian elimination, and then exploited to speed up the very same Gaussian elimination. The impact of the proposal will be to provide new solvers for difficult PDEs. In particular thesoftware that is developed will be made available to the community, and should enable scientists and engineers to have a new tool for their difficult problems. It will also infuse fresh ideas into the field of sparse direct solvers and unify it with the field of iterative methods.
加州大学伯克利分校的Shivkumar ChandraseKaranU合作研究:超快直接稀疏求解偏微分方程(PDE)的数值解是工程和科学所有学科的关键使能技术。然而,三维偏微分方程组的数值解是阻碍这一潜力实现的关键瓶颈。这一提议提出了可以用来克服这一瓶颈的技术。离散的椭圆型偏微分方程组由于稀疏高斯消去法中的填充量过大,通常采用迭代格式求解。这项建议观察到,在某种顺序中,填充在非对角线块中具有较低的数值排名,并且可以计算和利用这种结构来构造在未知数数量中线性的直接求解器。提出的研究结果有可能创建一类新的预条件,与迭代求解器相结合可以成为求解困难的椭圆偏微分方程组的有力武器。该方案的智能优点来自于填充中的复杂结构,必须首先从椭圆偏微分方程理论中格林函数的正则性结果推导出该结构,然后转换为有效的线性时间算法,以便在稀疏高斯消去过程中动态捕捉结构,然后利用该算法来加速完全相同的高斯消元。该提案的影响将是为困难的PDE提供新的解算器。特别是,开发的软件将向社区提供,并应使科学家和工程师有一个新的工具来解决他们的难题。它还将为稀疏直接求解器领域注入新的思想,并将其与迭代方法领域统一起来。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shivkumar Chandrasekaran其他文献
A Fast Algorithm for Computing Macaulay Null Spaces of Bivariate Polynomial Systems
计算二元多项式系统麦考利零空间的快速算法
- DOI:
10.1137/23m1550414 - 发表时间:
2024 - 期刊:
- 影响因子:1.5
- 作者:
N. Govindarajan;Raphaël Widdershoven;Shivkumar Chandrasekaran;L. D. Lathauwer - 通讯作者:
L. D. Lathauwer
On the Length and Area Regularization for Multiphase Level Set Segmentation
- DOI:
10.1007/s11263-010-0348-4 - 发表时间:
2010-06-23 - 期刊:
- 影响因子:9.300
- 作者:
Luca Bertelli;Shivkumar Chandrasekaran;Frédéric Gibou;B. S. Manjunath - 通讯作者:
B. S. Manjunath
Shivkumar Chandrasekaran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shivkumar Chandrasekaran', 18)}}的其他基金
AF EAGER: Minimum Sobolev Norm techniques for systems of elliptic PDEs
AF EAGER:椭圆偏微分方程组的最小 Sobolev 范数技术
- 批准号:
1450321 - 财政年份:2014
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: Minimum Sobolev Norm Methods
合作研究:最小 Sobolev 范数方法
- 批准号:
0830604 - 财政年份:2008
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
CAREER: Studies in Numerical Linear Algebra
职业:数值线性代数研究
- 批准号:
9734290 - 财政年份:1998
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: EAGER: Towards Safeguarding the Emerging Miniapp Paradigm in Mobile Super Apps
合作研究:EAGER:捍卫移动超级应用中新兴的小应用范式
- 批准号:
2330265 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Towards Safeguarding the Emerging Miniapp Paradigm in Mobile Super Apps
合作研究:EAGER:捍卫移动超级应用中新兴的小应用范式
- 批准号:
2330264 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Programmed Stimuli-responsive Mesoscale Polymers Inspired by Worm Blobs as Emergent Super-Materials
EAGER/合作研究:受蠕虫斑点启发的程序化刺激响应介观尺度聚合物作为新兴超级材料
- 批准号:
2218382 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Programmed Stimuli-responsive Mesoscale Polymers Inspired by Worm Blobs as Emergent Super-Materials
EAGER/合作研究:受蠕虫斑点启发的程序化刺激响应介观尺度聚合物作为新兴超级材料
- 批准号:
2218119 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: ECCS-EPSRC: Nitride Super-Junction HEMTs for Robust, Efficient, Fast Power Switching
合作研究:ECCS-EPSRC:用于稳健、高效、快速功率开关的氮化物超级结 HEMT
- 批准号:
2036915 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
EAGER: SUPER: Collaborative Research: Stabilization of Warm and Light Superconductors at Low Pressures by Chemical Doping
EAGER:SUPER:合作研究:通过化学掺杂在低压下稳定温光超导体
- 批准号:
2132574 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
EAGER: SUPER: Collaborative Research: Stabilization of Warm and Light Superconductors at Low Pressures by Chemical Doping
EAGER:SUPER:合作研究:通过化学掺杂在低压下稳定温光超导体
- 批准号:
2132491 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
EAGER: SUPER: Collaborative Research: Ab Initio Engineering of Doped-Covalent-Bond Superconductors
EAGER:SUPER:合作研究:掺杂共价键超导体的从头工程
- 批准号:
2132589 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Collaborative Research: Super Dual Auroral Radar Network (SuperDARN) Operations, Research and Community Support
合作研究:超级双极光雷达网络 (SuperDARN) 运营、研究和社区支持
- 批准号:
2125323 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Collaborative Research: ECCS-EPSRC: Nitride Super-Junction HEMTs for Robust, Efficient, Fast Power Switching
合作研究:ECCS-EPSRC:用于稳健、高效、快速功率开关的氮化物超级结 HEMT
- 批准号:
2036740 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant














{{item.name}}会员




