NeTS-NOSS: Adaptivity in Sensor Networks for Optimized Distributed Sensing and Signal Processing
NeTS-NOSS:传感器网络的自适应性,用于优化分布式传感和信号处理
基本信息
- 批准号:0520280
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-08-01 至 2011-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to develop an adaptive sensor network architecture that enables the efficient, large-scale, long-term, low-cost, on-demand monitoring of a variety of physical phenomena with high fidelity. The core theme is that distributed signal processing and data assimilation of sensor data, as well as network management and monitoring, should be performed inside the sensor network in order to reduce energy consumption and global communication needs, leading to dramatically increased sensor lifetimes and much higher fidelity in the tracking of the physical phenomena of interest. The goal is to develop a flexible, self-monitoring architecture for this type of in-network processing and sensor networking that exploits adaptivity to significantly improve the network's efficiency, robustness, and usefulness. Two kinds of adaptivity are considered: (1) data adaptivity, where the network topology is adapted to align communications with the natural data flows; and (2) resource adaptivity, where the network topology is adapted based on computational, battery, or bandwidth resources. The expected results include the development of adaptive communication protocols and routing topology, the development of network management tools for sensor communication performance monitoring and inference, and for sensor distribution monitoring, as well as the experimental deployment of the adaptive sensor network architecture in a small-scale testbed of sensor nodes on the Rice University campus. Results will be disseminated through technical reports posted on the project web page, through papers presented at professional meetings, as well as through journal publications.
该项目旨在开发一种自适应传感器网络架构,能够高效、大规模、长期、低成本、按需监测各种高保真物理现象。核心主题是传感器数据的分布式信号处理和数据同化,以及网络管理和监控,应该在传感器网络内部进行,以减少能源消耗和全球通信需求,从而显着增加传感器寿命,并在跟踪感兴趣的物理现象时具有更高的保真度。我们的目标是为这种类型的网络内处理和传感器网络开发一种灵活的、自我监控的体系结构,利用自适应性来显著提高网络的效率、鲁棒性和实用性。考虑了两种自适应性:(1)数据自适应性,其中网络拓扑调整以使通信与自然数据流保持一致;(2)资源适应性,即网络拓扑根据计算资源、电池资源或带宽资源进行调整。预期结果包括自适应通信协议和路由拓扑的开发,用于传感器通信性能监控和推理以及传感器分布监控的网络管理工具的开发,以及自适应传感器网络架构在莱斯大学校园传感器节点的小型测试平台上的实验性部署。结果将通过在项目网页上登载的技术报告、在专业会议上提出的论文以及通过期刊出版物来传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Baraniuk其他文献
Parameterless Optimal Approximate Message Passing
无参数最优近似消息传递
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
A. Mousavi;A. Maleki;Richard Baraniuk - 通讯作者:
Richard Baraniuk
Compressive Acquisition of Dynamic Scenes
动态场景的压缩采集
- DOI:
10.1007/978-3-642-15549-9_10 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Aswin C. Sankaranarayanan;P. Turaga;R. Chellappa;Richard Baraniuk - 通讯作者:
Richard Baraniuk
Optimal tree approximation with wavelets
- DOI:
10.1117/12.366780 - 发表时间:
1999-10 - 期刊:
- 影响因子:0
- 作者:
Richard Baraniuk - 通讯作者:
Richard Baraniuk
Dynamic model generation for application of compressed sensing to cryo-electron tomography reconstruction
压缩感知应用于冷冻电子断层扫描重建的动态模型生成
- DOI:
10.1109/dsp-spe.2015.7369557 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
S. Wood;E. Fontenla;Christopher A. Metzler;W. Chiu;Richard Baraniuk - 通讯作者:
Richard Baraniuk
Short-Answer Responses to STEM Questions : Measuring Response Validity and Its Impact on Learning
STEM 问题的简答回答:衡量回答有效性及其对学习的影响
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Andrew E. Waters;Phillip J. Grimaldi;Andrew S. Lan;Richard Baraniuk - 通讯作者:
Richard Baraniuk
Richard Baraniuk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Baraniuk', 18)}}的其他基金
Accelerating STEM Learning Through Large-Scale Data Science
通过大规模数据科学加速 STEM 学习
- 批准号:
1842378 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
CIF: Small: A Probabilistic Theory of Deep Learning via Spline Operators
CIF:小:通过样条算子进行深度学习的概率理论
- 批准号:
1911094 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Convergence Accelerator Phase I (RAISE): Scalable Knowledge Network to Enable Intelligent Textbooks
融合加速器第一阶段(RAISE):可扩展的知识网络以实现智能教科书
- 批准号:
1937134 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
NCS-FO: Collaborative Research: Operationalizing Students' Textbooks Annotations to Improve Comprehension and Long-Term Retention
NCS-FO:协作研究:运用学生的教科书注释以提高理解力和长期保留
- 批准号:
1631556 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
CIF: Small: Lens-Free Imaging: Can Signal Processing Replace Lenses?
CIF:小:无镜头成像:信号处理可以取代镜头吗?
- 批准号:
1527501 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Integrating the eTextbook: Truly Interactive Textbooks for Computer Science Education
合作研究:整合电子教科书:真正的计算机科学教育互动教科书
- 批准号:
1139873 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
DIP: Collaborative Research: A Personalized Cyberlearning System Based on Cognitive Science
DIP:协作研究:基于认知科学的个性化网络学习系统
- 批准号:
1124535 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: CI-Team Implementation Project: The Signal Processing Education Network
合作研究:CI 团队实施项目:信号处理教育网络
- 批准号:
1041396 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Design and Analysis of Compressed Sensing DNA Microarrays
合作研究:压缩传感 DNA 微阵列的设计和分析
- 批准号:
0728867 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant
WAMA 2004: Wavelets and Multifractal Analysis Workshop
WAMA 2004:小波和多重分形分析研讨会
- 批准号:
0430648 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
乌拉尔甘草中NO合酶(NOSs)小分子抑制剂的发现
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:
基于安全自愿报告与NOSS综合框架的空管人为因素研究
- 批准号:60776805
- 批准年份:2007
- 资助金额:18.0 万元
- 项目类别:联合基金项目
相似海外基金
Molecular mechanisms for NOSs-mediated responses in microvessels
NOS介导的微血管反应的分子机制
- 批准号:
22390154 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
NeTS NOSS: Collaborative Research: Towards Robust and Self-Healing Heterogeneous Wireless Sensor Networks
NetS NOSS:协作研究:迈向稳健且自我修复的异构无线传感器网络
- 批准号:
0963578 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: NeTS-NOSS: Distributed Algorithms for Sensor-Aided Directories to Mobile Objects
合作研究:NeTS-NOSS:移动对象传感器辅助目录的分布式算法
- 批准号:
0846081 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
NOSS: Airborne Video Sensor Networks for Surveillance and Emergency Response
NOSS:用于监视和应急响应的机载视频传感器网络
- 批准号:
0721701 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research NeTS-NOSS: SEA-Swarm: A Rapidly Deployable Underwater Sensor Network
协作研究 NetS-NOSS:SEA-Swarm:可快速部署的水下传感器网络
- 批准号:
0722046 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research-NeTS-NOSS: AutoNomouS netWorked sEnsoR systems (ANSWER)
协作研究-NETS-NOSS:自主网络传感器系统(答案)
- 批准号:
0721523 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant
NeTS/NOSS: ASPEN: Abstraction-based Sensor Programming Environment
NeTS/NOSS:ASPEN:基于抽象的传感器编程环境
- 批准号:
0721541 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant
NeTS-NOSS: Collaborative Research: Energy-Efficient Distributed Sensor Network Control: Theory to Implementation
NetS-NOSS:协作研究:节能分布式传感器网络控制:理论到实现
- 批准号:
0721477 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant
NeTS-NOSS: Collaborative Research: LEAPNET: Self-adaptable All Terrain Sensor Networks
NetS-NOSS:合作研究:LEAPNET:自适应全地形传感器网络
- 批准号:
0721516 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing grant
NOSS: Ultra-Wideband Sensor Networks for Automotive Vehicles
NOSS:汽车超宽带传感器网络
- 批准号:
0721813 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant