CIF: Small: A Probabilistic Theory of Deep Learning via Spline Operators
CIF:小:通过样条算子进行深度学习的概率理论
基本信息
- 批准号:1911094
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Deep learning has significantly advanced the ability to address a wide range of difficult machine perception tasks, such as recognizing objects from images, activities from videos, or text from speech. As a result, deep learning systems not only are playing a key role in emerging products and services, from conversational assistants to driverless vehicles, but they are also revolutionizing existing ones, from robotics to legal document analysis. Moreover, in the scientific realm, deep learning is enabling new ways to find patterns in large complicated datasets. This success is impressive, but a fundamental question remains: Why does deep learning work? Intuitions abound, but a coherent framework for understanding, analyzing, and designing deep learning architectures has remained elusive. This project will develop a theoretical foundation for deep learning systems by connecting them to classical and recent results from the signal processing, approximation theory, information theory, and statistics. A key goal is the development of new kinds of deep learning systems whose inner workings are explainable and interpretable. This project will have a range of impacts, from developing trustworthy, interpretable models and algorithms for mission-critical applications like autonomous navigation and decision making to advancing machine learning and signal processing education.This project builds on an elegant connection between a wide class of deep (neural) networks based on piecewise-affine, convex nonlinearities and max-affine spline operators (MASOs). The research is organized around two interlocking themes. The first theme revolves around the extension of the MASO framework beyond piecewise-affine, convex nonlinearities by linking deterministic MASOs with probabilistic Gaussian mixture models. The extended, probabilistic MASO will enable the analysis of deep networks with more general nonlinearities than those that are piecewise-affine and convex, such as the sigmoid, hyperbolic tangent, and softmax. The second theme revolves around extending deterministic MASO deep networks to a new class of hierarchical, probabilistic, generative models that generalize the feedforward inference calculations and backpropagation learning of conventional deep networks to optimal Bayesian inference via a closed-form variational expectation-maximization (EM) algorithm. The probabilistic structure will enable the full arsenal of probability and statistics methodology to be applied to deep learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度学习极大地提高了解决各种困难的机器感知任务的能力,例如从图像中识别物体,从视频中识别活动,或从语音中识别文本。因此,深度学习系统不仅在新兴产品和服务中发挥着关键作用,从会话助手到无人驾驶汽车,而且还在彻底改变现有的产品和服务,从机器人到法律文件分析。此外,在科学领域,深度学习为在大型复杂数据集中发现模式提供了新的方法。这种成功令人印象深刻,但一个基本问题仍然存在:为什么深度学习有效?直觉比比皆是,但理解、分析和设计深度学习架构的连贯框架仍然难以捉摸。该项目将通过将深度学习系统与信号处理、近似理论、信息论和统计学的经典和最新结果联系起来,为深度学习系统奠定理论基础。一个关键目标是开发新型的深度学习系统,其内部工作是可解释和可解释的。该项目将产生一系列影响,从为自主导航和决策等关键任务应用开发可信赖、可解释的模型和算法,到推进机器学习和信号处理教育。该项目建立在基于分段仿射、凸非线性和最大仿射样条算子(MASOs)的广泛的深度(神经)网络之间的优雅连接上。这项研究围绕两个相互关联的主题展开。第一个主题围绕着通过将确定性MASO与概率高斯混合模型联系起来,将MASO框架扩展到分段仿射、凸非线性之外。扩展的、概率的MASO将使深度网络的分析具有更一般的非线性,而不是那些分段仿射和凸的,如s型、双曲正切和softmax。第二个主题围绕着将确定性MASO深度网络扩展到一类新的分层、概率、生成模型,这些模型将传统深度网络的前馈推理计算和反向传播学习推广到最优贝叶斯推理,通过封闭形式的变分期望最大化(EM)算法。概率结构将使概率和统计方法的全部武器库应用于深度学习。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(35)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DeepHull: Fast Convex Hull Approximation in High Dimensions
DeepHull:高维下的快速凸包逼近
- DOI:10.1109/icassp43922.2022.9746031
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Balestriero, Randall;Wang, Zichao;Baraniuk, Richard G.
- 通讯作者:Baraniuk, Richard G.
MaGNET: Uniform Sampling from Deep Generative Network Manifolds Without Retraining
- DOI:
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:Ahmed Imtiaz Humayun;Randall Balestriero;Richard Baraniuk
- 通讯作者:Ahmed Imtiaz Humayun;Randall Balestriero;Richard Baraniuk
Evaluating generative networks using Gaussian mixtures of image features
- DOI:10.1109/wacv56688.2023.00036
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:L. Luzi;Carlos Ortiz Marrero;Nile Wynar;Richard Baraniuk;Michael J. Henry
- 通讯作者:L. Luzi;Carlos Ortiz Marrero;Nile Wynar;Richard Baraniuk;Michael J. Henry
MINER: Multiscale Implicit Neural Representation
MINER:多尺度隐式神经表示
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Saragadam, Vishwanath;Tan, Jasper;Balakrishnan, Guha;Baraniuk, Richard G.;Veeraraghavan, Ashok
- 通讯作者:Veeraraghavan, Ashok
Thermal Image Processing via Physics-Inspired Deep Networks
- DOI:10.1109/iccvw54120.2021.00451
- 发表时间:2021-08
- 期刊:
- 影响因子:0
- 作者:Vishwanath Saragadam;Akshat Dave;A. Veeraraghavan;Richard Baraniuk
- 通讯作者:Vishwanath Saragadam;Akshat Dave;A. Veeraraghavan;Richard Baraniuk
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Baraniuk其他文献
Parameterless Optimal Approximate Message Passing
无参数最优近似消息传递
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
A. Mousavi;A. Maleki;Richard Baraniuk - 通讯作者:
Richard Baraniuk
Compressive Acquisition of Dynamic Scenes
动态场景的压缩采集
- DOI:
10.1007/978-3-642-15549-9_10 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Aswin C. Sankaranarayanan;P. Turaga;R. Chellappa;Richard Baraniuk - 通讯作者:
Richard Baraniuk
Optimal tree approximation with wavelets
- DOI:
10.1117/12.366780 - 发表时间:
1999-10 - 期刊:
- 影响因子:0
- 作者:
Richard Baraniuk - 通讯作者:
Richard Baraniuk
Dynamic model generation for application of compressed sensing to cryo-electron tomography reconstruction
压缩感知应用于冷冻电子断层扫描重建的动态模型生成
- DOI:
10.1109/dsp-spe.2015.7369557 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
S. Wood;E. Fontenla;Christopher A. Metzler;W. Chiu;Richard Baraniuk - 通讯作者:
Richard Baraniuk
Short-Answer Responses to STEM Questions : Measuring Response Validity and Its Impact on Learning
STEM 问题的简答回答:衡量回答有效性及其对学习的影响
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Andrew E. Waters;Phillip J. Grimaldi;Andrew S. Lan;Richard Baraniuk - 通讯作者:
Richard Baraniuk
Richard Baraniuk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Baraniuk', 18)}}的其他基金
Accelerating STEM Learning Through Large-Scale Data Science
通过大规模数据科学加速 STEM 学习
- 批准号:
1842378 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Convergence Accelerator Phase I (RAISE): Scalable Knowledge Network to Enable Intelligent Textbooks
融合加速器第一阶段(RAISE):可扩展的知识网络以实现智能教科书
- 批准号:
1937134 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NCS-FO: Collaborative Research: Operationalizing Students' Textbooks Annotations to Improve Comprehension and Long-Term Retention
NCS-FO:协作研究:运用学生的教科书注释以提高理解力和长期保留
- 批准号:
1631556 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CIF: Small: Lens-Free Imaging: Can Signal Processing Replace Lenses?
CIF:小:无镜头成像:信号处理可以取代镜头吗?
- 批准号:
1527501 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Integrating the eTextbook: Truly Interactive Textbooks for Computer Science Education
合作研究:整合电子教科书:真正的计算机科学教育互动教科书
- 批准号:
1139873 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
DIP: Collaborative Research: A Personalized Cyberlearning System Based on Cognitive Science
DIP:协作研究:基于认知科学的个性化网络学习系统
- 批准号:
1124535 - 财政年份:2011
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CI-Team Implementation Project: The Signal Processing Education Network
合作研究:CI 团队实施项目:信号处理教育网络
- 批准号:
1041396 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Design and Analysis of Compressed Sensing DNA Microarrays
合作研究:压缩传感 DNA 微阵列的设计和分析
- 批准号:
0728867 - 财政年份:2007
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
NeTS-NOSS: Adaptivity in Sensor Networks for Optimized Distributed Sensing and Signal Processing
NeTS-NOSS:传感器网络的自适应性,用于优化分布式传感和信号处理
- 批准号:
0520280 - 财政年份:2005
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
WAMA 2004: Wavelets and Multifractal Analysis Workshop
WAMA 2004:小波和多重分形分析研讨会
- 批准号:
0430648 - 财政年份:2004
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
FET: Small: CMOS+X: Integration of CMOS and voltage-controlled magnetic tunnel junctions for probabilistic computing
FET:小型:CMOS X:集成 CMOS 和压控磁隧道结,用于概率计算
- 批准号:
2322572 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: A Unified Framework for Analyzing Adaptive Stochastic Optimization Methods Based on Probabilistic Oracles
合作研究:AF:Small:基于概率预言的自适应随机优化方法分析统一框架
- 批准号:
2139735 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: A Unified Framework for Analyzing Adaptive Stochastic Optimization Methods Based on Probabilistic Oracles
合作研究:AF:Small:基于概率预言的自适应随机优化方法分析统一框架
- 批准号:
2140057 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
RI: Small: New Directions in Probabilistic Deep Learning: Exponential Families, Bayesian Nonparametrics and Empirical Bayes
RI:小:概率深度学习的新方向:指数族、贝叶斯非参数和经验贝叶斯
- 批准号:
2127869 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
FET: Small: Collaborative Research: A Probability Correlator for All-Magnetic Probabilistic Computing: Theory and Experiment
FET:小型:协作研究:全磁概率计算的概率相关器:理论与实验
- 批准号:
2006753 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
FET: Small: Collaborative Research: A Probability Correlator for All-Magnetic Probabilistic Computing: Theory and Experiment
FET:小型:协作研究:全磁概率计算的概率相关器:理论与实验
- 批准号:
2006843 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
FET: Small: Smart Probabilistic Computation with Limited Resources
FET:小型:资源有限的智能概率计算
- 批准号:
2006704 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Semantics of Higher Order Probabilistic Programs
SHF:小:高阶概率程序的语义
- 批准号:
2008083 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
RI: Small: Anytime Algorithms and Bounds for Probabilistic Graphical Models
RI:小:概率图形模型的随时算法和界限
- 批准号:
2008516 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Probabilistic Programming and Statistical Verification for Safe Autonomy
SHF:小:安全自治的概率编程和统计验证
- 批准号:
2008883 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant