Global Dynamic Optimization
全局动态优化
基本信息
- 批准号:0521962
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-09-01 至 2009-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTPI: Paul I. Barton Institution: Massachusetts Institute of TechnologyProposal Number: 0521962Title: Global Dynamic OptimizationDynamic optimization determines values for input/control profiles, real valued parameters, initial conditions and/or boundary conditions of a dynamic system that optimize its performance over some period of time according to a specified metric. Dynamic optimization problems appear in almost every aspect of modern chemical engineering. The dynamic optimization problems encountered in chemical engineering often exhibit multiple suboptimal local minima. Conventional approaches for the solution of dynamic optimization problems can only guarantee locating local minima, which may be suboptimal. Suboptimality can have direct economic, safety and environmental impacts if a suboptimal solution is implemented on a real system. This project will develop theory, numerical methods and software that can guarantee locating a global solution of a dynamic optimization problem within a finite number of iterations.Intellectual Merit Previous research by the PI supported by the NSF has created global optimization theory and algorithms for optimization problems embedding linear time varying ordinary differential equations (ODEs) and nonlinear ODEs. The approach has been demonstrated for relatively small dynamic systems and up to about ten degrees of freedom in the optimization problem. The purpose of this research is to develop the theory and algorithms further so that optimization problems involving large-scale dynamic systems (possibly 1,000s-10,000s of state variables) and tens of degrees of freedom can be solved to guaranteed global optimality. This would bring a majority of the dynamic optimization problems in chemical engineering within the scope of global optimization methods. A key theoretical and practical issue in this extension is the computation of tight estimates of the image of a parameter set under the solution of nonquasi-monotone differential equations (most chemical engineering applications are nonquasi-monotone). Theory and algorithms based on extensions of classical results in differential inequalities will be used to address this issue. Moreover, many dynamic optimization problems in chemical engineering also have differential-algebraic equations (DAEs) and/or partial differential equations (PDEs) embedded. Theory and algorithms extending the global optimization approach to DAE and PDE embedded systems are planned.An application of global dynamic optimization is formal safety verification; deterministic global optimization provides a constructive proof that a dynamic system is safe, or guarantees location of a counterexample. However, formal verification is always with respect to a model and does not take into account the fact that there is always a discrepancy between the predictions of a model and the behavior of the corresponding physical system. This is commonly referred to as model uncertainty. Previous research has not considered the issue of model uncertainty in formal safety verification, but this is a potentially critical issue in guaranteeing the safety of a physical system. An approach based on a semi-infinite program with differential equations embedded is proposed to address model uncertainty in safety verification.Broader Impacts: The growing capability to solve dynamic optimization problems to guaranteed global optimality could have broad practical implications. For example, in the area of process operations there is hope for solving problems such as formal safety verification under uncertainty, the synthesis of integrated batch processes, and the design of major process transients such as start-up and shut-down procedures, using detailed dynamic models. The results of this work will be broadly disseminated through journal articles, publicly distributed software, course curricula and a textbook on global optimization currently being prepared by the PI. Moreover, the software developed through this project will be freely distributed via the Web to academic researchers. The project should provide students many opportunities for multidisciplinary education and research. The large number of female undergraduate and graduate students in the department should help in attracting some of them t o work on this project.
[摘要]pi: Paul I. Barton机构:麻省理工学院提案号:0521962标题:全局动态优化动态优化确定输入/控制轮廓,实值参数,初始条件和/或边界条件的值,动态系统根据指定的度量在一段时间内优化其性能。动态优化问题几乎出现在现代化工的各个方面。化工动态优化问题往往存在多个次优局部最小值。求解动态优化问题的传统方法只能保证找到局部极小值,而这可能是次优的。如果在实际系统中实现次优解决方案,则次优性会对经济、安全和环境产生直接影响。该项目将开发理论、数值方法和软件,以保证在有限次数的迭代中找到动态优化问题的全局解。由国家科学基金会资助的PI先前的研究已经为嵌入线性时变常微分方程和非线性常微分方程的优化问题创建了全局优化理论和算法。该方法已在相对较小的动态系统和高达约十个自由度的优化问题中得到证明。本研究的目的是进一步发展理论和算法,以便解决涉及大规模动态系统(可能有1,000 -10,000个状态变量)和数十个自由度的优化问题,以保证全局最优性。这将把大多数化工动态优化问题纳入全局优化方法的范畴。在这个扩展中,一个关键的理论和实践问题是在非拟单调微分方程(大多数化学工程应用是非拟单调的)解下参数集像的紧估计的计算。基于微分不等式经典结果扩展的理论和算法将用于解决这个问题。此外,化学工程中的许多动态优化问题还包含微分代数方程(DAEs)和/或偏微分方程(PDEs)。规划了将全局优化方法扩展到DAE和PDE嵌入式系统的理论和算法。全局动态优化的一个应用是形式安全验证;确定性全局优化提供了一个建设性的证据,证明一个动态系统是安全的,或者保证反例的位置。然而,形式验证总是针对模型,而没有考虑到模型的预测与相应物理系统的行为之间总是存在差异这一事实。这通常被称为模型不确定性。以前的研究没有考虑到形式安全验证中的模型不确定性问题,但这是保证物理系统安全的潜在关键问题。提出了一种基于嵌入微分方程的半无限规划方法来解决安全验证中的模型不确定性问题。更广泛的影响:解决动态优化问题以保证全局最优性的能力日益增长,可能具有广泛的实际意义。例如,在工艺操作领域,利用详细的动态模型,有希望解决不确定条件下的正式安全验证、集成批量工艺的综合以及启动和关闭程序等主要工艺瞬态的设计等问题。这项工作的成果将通过期刊文章、公开分发的软件、课程和PI目前正在编写的关于全球优化的教科书广泛传播。此外,通过该项目开发的软件将通过网络免费分发给学术研究人员。该项目应为学生提供多学科教育和研究的机会。该系大量的女性本科生和研究生应该有助于吸引她们中的一些人参与这个项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Barton其他文献
Control of myogenesis in the mouse myogenic C2 cell line by medium composition and by insulin: characterization of permissive and inducible C2 myoblasts.
通过培养基成分和胰岛素控制小鼠肌源性 C2 细胞系的肌生成:许可型和诱导型 C2 成肌细胞的特征。
- DOI:
10.1111/j.1432-0436.1988.tb00588.x - 发表时间:
1988 - 期刊:
- 影响因子:0
- 作者:
Christian Pinset;Didier Montarras;Janet Chenevert;Adrian Minty;Paul Barton;Christine Laurent;François Gros - 通讯作者:
François Gros
Cooperative economies in a global age
全球化时代的合作经济
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Stefan Siebel;Manfred B. Steger;Erin Wilson;Burghard Flieger;Seb Prowse;Chris Flynn;James Gormley;Cathy Gibson;Brett Walters;Paul Barton;Allison Heskes;Tom Quinn;Sophie Ellis;George Kirby;Lauren Carroll;Dirk Beyer;Oğuzhan Narin;Max Bohnet;Jochen Baumeister;Brian Walsh;Bernie Cahir - 通讯作者:
Bernie Cahir
Delivering Peer-Based Support in Prisons During the COVID Pandemic and Lockdown: Innovative Activities Delivered by People Who Care.
在新冠病毒大流行和封锁期间在监狱中提供同伴支持:关心者提供的创新活动。
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:1.5
- 作者:
D. Best;Theresa Critchlow;David Higham;Kerrie Higham;R. Thompson;Darren Shields;Paul Barton - 通讯作者:
Paul Barton
巨核球特異的β1-tubulin異常は微小管構成阻害により胞体突起形成不全を来す
巨核细胞特异性β1微管蛋白异常会抑制微管组织,导致细胞突起形成缺陷。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Marianne Fletcher;Piers Boshier;Kenji Wakabayashi;Hector Keun;Ryszard T. Smolenski;Paul Kirkham;Ian Adcock;Paul Barton;Masao Takata;and Nandor Marczin;國島伸治 北村勝誠 松本多絵 関根孝司;國島伸治 北村勝誠 西村智 鈴木英紀 今泉益栄 齋藤英彦 - 通讯作者:
國島伸治 北村勝誠 西村智 鈴木英紀 今泉益栄 齋藤英彦
Uncertainties in the measurement of blood glucose in paediatric intensive care: implications for clinical trials of tight glycaemic control
- DOI:
10.1007/s00134-011-2302-5 - 发表时间:
2011-07-09 - 期刊:
- 影响因子:21.200
- 作者:
Helen Hill;Paul Baines;Paul Barton;Paul Newland;Dianne Terlouw;Mark Turner - 通讯作者:
Mark Turner
Paul Barton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Barton', 18)}}的其他基金
Directed Assembly of Nanoscale Process Systems
纳米级工艺系统的定向组装
- 批准号:
1033533 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
Convex Underestimators for Dynamic Optimization Problems
动态优化问题的凸低估器
- 批准号:
0120441 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Standard Grant
Formal Verification of Hybrid Systems Using Global Optimization
使用全局优化对混合系统进行形式化验证
- 批准号:
0208956 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Continuing grant
Decomposition Approaches To Mixed Integer Dynamic Optimization
混合整数动态优化的分解方法
- 批准号:
9703623 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
Modelling and Dynamic Simulation of Process Safety Systems
过程安全系统的建模和动态仿真
- 批准号:
9321863 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Dynamic Credit Rating with Feedback Effects
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Improving global optimization methods for dynamic process models
改进动态过程模型的全局优化方法
- 批准号:
RGPIN-2017-05944 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Improving global optimization methods for dynamic process models
改进动态过程模型的全局优化方法
- 批准号:
RGPIN-2017-05944 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Improving global optimization methods for dynamic process models
改进动态过程模型的全局优化方法
- 批准号:
RGPIN-2017-05944 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Improving global optimization methods for dynamic process models
改进动态过程模型的全局优化方法
- 批准号:
RGPIN-2017-05944 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Efficient Global Dynamic Optimization using Dynamic Cut Generation and Domain Reduction Techniques
使用动态剪切生成和域缩减技术进行高效的全局动态优化
- 批准号:
1949747 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Efficient Global Dynamic Optimization using Dynamic Cut Generation and Domain Reduction Techniques
使用动态剪切生成和域缩减技术进行高效的全局动态优化
- 批准号:
1803706 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Improving global optimization methods for dynamic process models
改进动态过程模型的全局优化方法
- 批准号:
RGPIN-2017-05944 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Improving global optimization methods for dynamic process models
改进动态过程模型的全局优化方法
- 批准号:
RGPIN-2017-05944 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Elucidation of static and dynamic solvent effects by global structure optimization and molecular dynamics of microsolvation clusters
通过微溶剂化簇的整体结构优化和分子动力学阐明静态和动态溶剂效应
- 批准号:
170008408 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
Global Verification and Dynamic Optimization of Network Security Polices
网络安全策略全局验证与动态优化
- 批准号:
1019222 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Continuing Grant