QnTM: Collaborative Research EMT: The Quantum Complexity of Algebraic Problems

QnTM:协作研究 EMT:代数问题的量子复杂性

基本信息

  • 批准号:
    0523456
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-08-01 至 2009-07-31
  • 项目状态:
    已结题

项目摘要

Quantum computing offers powerful new ways to solve cryptographic problems far more efficiently than classical computers can. This project focuses on the development of new quantum algorithms for problems such as Graph Isomorphism, for which there is no known efficient algorithm on classical computers. We focus on the Hidden Subgroup Problem (HSP) and its relatives. The HSP framework made its first appearance in the seminal work of Simon and Shor, where it led to efficient quantum algorithms for several basic problems in computational number theory, including integer factoring and computing discrete logarithms. In particular, Shor's algorithm for the HSP on the cyclic group makes it possible to break the RSA public-key cryptosystem.The hidden subgroup problems appearing in Simon's and Shor's algorithms take place over commutative groups, a case of the HSP that is now well-understood. The noncommutative hidden subgroup problem is intimately linked to several problems of major interest, including Graph Isomorphism, hidden shift problems, and cryptographically important cases of the Shortest Lattice Vector problem. Despite these incentives, however, the noncommutative HSP has largely resisted the quantum computing community's advances thus far. Efficient algorithms are only known for a few families of groups, and even the information--theoretic aspects of the problem are poorly understood. This project will seek both efficient quantum algorithms and query-complexity lower bounds for the symmetric group---the case of the HSP relevant to Graph Isomorphism---and other groups of algorithmic interest. Our approach applies the rich mathematical tools of representation theory, adapted bases, and entangled measurements over multiple coset states.
量子计算提供了强大的新方法来解决密码问题,其效率远远高于经典计算机。该项目侧重于开发新的量子算法来解决图同构等问题,这些问题在经典计算机上没有已知的有效算法。我们主要研究隐子群问题(HSP)及其相关问题。HSP框架首次出现在Simon和Shor的开创性工作中,在那里它导致了计算数论中几个基本问题的有效量子算法,包括整数分解和计算离散对数。特别是,循环组上的HSP的Shor算法使得破解RSA公钥密码系统成为可能。在Simon和Shor算法中出现的隐藏子群问题发生在交换群上,这是HSP的一个例子,现在已经很好地理解了。非交换隐子群问题与几个重要的问题密切相关,包括图同构、隐移位问题和最短格向量问题的重要密码学案例。然而,尽管有这些激励措施,非交换HSP迄今为止在很大程度上抵制了量子计算社区的进步。有效的算法只适用于少数群体,甚至对问题的信息理论方面也知之甚少。该项目将寻求有效的量子算法和对称群的查询复杂度下界-与图同构相关的HSP的情况-以及其他算法感兴趣的组。我们的方法应用了丰富的数学工具,包括表示理论、自适应基和多个协集状态的纠缠测量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Russell其他文献

Adaptively Secure Random Beacons for Ungrindable Blockchains
不可研磨区块链的自适应安全随机信标
The Do-All problem with Byzantine processor failures
拜占庭处理器故障的万能问题
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Antonio Fernández;Chryssis Georgiou;Alexander Russell;Alexander A. Shvartsman
  • 通讯作者:
    Alexander A. Shvartsman
Pharmaceutical Process Modeling
  • DOI:
    10.1208/s12249-022-02246-4
  • 发表时间:
    2022-03-16
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Alexander Russell;Maxx Capece
  • 通讯作者:
    Maxx Capece
A One-Time Stegosystem and Applications to Efficient Covert Communication
  • DOI:
    10.1007/s00145-012-9135-4
  • 发表时间:
    2012-10-25
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Aggelos Kiayias;Yona Raekow;Alexander Russell;Narasimha Shashidhar
  • 通讯作者:
    Narasimha Shashidhar
Exact and Approximation Algorithms for DNA Tag Set Design by Dragoş
Dragoş 用于 DNA 标签集设计的精确和近似算法
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Drago¸s N Trinc;Major Advisor;I. Măndoiu;Rajasekaran Associate;Advisor;Alexander Russell
  • 通讯作者:
    Alexander Russell

Alexander Russell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Russell', 18)}}的其他基金

SaTC: CORE: Medium: Collaborative: Theory and Practice of Cryptosystems Secure Against Subversion
SaTC:核心:媒介:协作:密码系统安全防范颠覆的理论与实践
  • 批准号:
    1801487
  • 财政年份:
    2018
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
AF: Medium: Collaborative Research: Quantum-Secure Cryptography and Fine-Grained Quantum Query Complexity
AF:中:协作研究:量子安全密码学和细粒度量子查询复杂性
  • 批准号:
    1763773
  • 财政年份:
    2018
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
NeTS: Small: Collaborative Research: Advanced Algorithmic Tools for Discovery in Cognitive Radio Networks
NeTS:小型:协作研究:认知无线电网络中发现的高级算法工具
  • 批准号:
    1717432
  • 财政年份:
    2017
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: Representation-theoretic techniques for pseudorandomness and lower bounds
AF:小:协作研究:伪随机性和下界的表示理论技术
  • 批准号:
    1117427
  • 财政年份:
    2011
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: EMT/QIS: Quantum Algorithms and Post-Quantum Cryptography
合作研究:EMT/QIS:量子算法和后量子密码学
  • 批准号:
    0829917
  • 财政年份:
    2008
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
CDI Type-I: Quantum Diffusion and Quantum Random Walks in Physical Systems
CDI Type-I:物理系统中的量子扩散和量子随机游走
  • 批准号:
    0835735
  • 财政年份:
    2008
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Quantum Monte Carlo Algorithms and quantum circuit complexity
合作研究:量子蒙特卡罗算法和量子电路复杂性
  • 批准号:
    0218443
  • 财政年份:
    2002
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
ITR Collaborative Research: Complexity-Theoretic Applications of Fourier Analysis
ITR 合作研究:傅立叶分析的复杂性理论应用
  • 批准号:
    0220264
  • 财政年份:
    2002
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
CAREER: Efficient Cryptography with Provable Security Guarantees
职业:具有可证明安全保证的高效密码学
  • 批准号:
    0093065
  • 财政年份:
    2001
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
  • 批准号:
    2313120
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
  • 批准号:
    2335762
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335802
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335801
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Holocene biogeochemical evolution of Earth's largest lake system
合作研究:地球最大湖泊系统的全新世生物地球化学演化
  • 批准号:
    2336132
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: LTREB: The importance of resource availability, acquisition, and mobilization to the evolution of life history trade-offs in a variable environment.
合作研究:LTREB:资源可用性、获取和动员对于可变环境中生命史权衡演变的重要性。
  • 批准号:
    2338394
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Testing Evolutionary Models of Biotic Survival and Recovery from the Permo-Triassic Mass Extinction and Climate Crisis
合作研究:BoCP-实施:测试二叠纪-三叠纪大规模灭绝和气候危机中生物生存和恢复的进化模型
  • 批准号:
    2325380
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了