CDI Type-I: Quantum Diffusion and Quantum Random Walks in Physical Systems
CDI Type-I:物理系统中的量子扩散和量子随机游走
基本信息
- 批准号:0835735
- 负责人:
- 金额:$ 55.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-15 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CDI Type-I: Quantum Diffusion and Quantum RandomWalksin Physical SystemsAlexander Russell (PI), Robin C?ot´eUniversity of ConnecticutB. Project SummaryA shocking theoretical discovery of the late 90?s demonstrated that a computational apparatus directly harnessing the laws of quantum mechanics could dramatically outpace any classical computer for a number of important computational problems. This instigated a broad, ongoing effort both to implement such systems and to understand their full computational power.This project focuses on quantum random walks and quantum diffusion. Quantum random walks are important algorithmic tools appearing, for example, in the the most efficient known quantum algorithms for basic problems such as element distinctness (that is, the problem of determining if an element?such as a name or a number?appears twice in a long list) and evaluation of certain logic circuits. Quantum random walks are particularly attractive from the standpoint of implementation as they are presumably simpler to faithfully implement than a general purpose quantum computer. In particular, they possess a direct connection to quantum diffusion, an area of ultracold atomic physics. Our goal is to give the first rigorous analysis of a realistic quantum random walk and, thus, a clear indication of a candidate quantum system for implementing such walks.Intellectual merit. In this proposal, we intend to join forces of two new subfields of computer science and physics, namely quantum random walks (QRW) and ultracold atomic systems. More precisely, we will explore how the tools developed to investigate quantum random walks in simple models can be adapted to more realistic situations corresponding to physical systems of interest. Conversely, we will study realistic physical systems that could be engineered to correspond to models solvable with quantum random walks.These two complementary approaches will lead to insight about the complex underlying behavior of systems where quantum diffusion is crucial. Additionally, a large class of systems in condensed matter physics andatomic, molecular, and optical physics ? such as high-temperature superconductors or quantum magnets ? are thought to be described by models, such as the Bose-Hubbard model or one of its many generalizations,where quantum diffusion plays a key role. We plan to explore how one can control such systems so that simplified experimental setups, such as ultracold Rydberg atoms or ultracold atom-ion mixtures, can be exploited to mimic the simple models where the solutions to quantum random walks (and thus quantumdiffusion) are known.Broader impacts. We will continue our successful training efforts via the REU program (we have introduced dozens of students to real research topics) and graduate research guidance. Additionally, the PIs will develop and teach a multidisciplinary course entitled ?Quantum information and computation.?Within KAST (Kids Are Scientists Too), a 5-day program for 4th through 9th grade students, we will build new modules based on children?s fascination with technologies and computers. Additionally, the PIs will continue involvement in the DaVinci project, a program introducing high-school teachers to topics inengineering, mathematics, and physics that can be integrated into their high school science curricula.B-1
CDI类型1:物理系统中的量子扩散和量子随机行走(PI), Robin C?康涅狄格大学90年代末令人震惊的理论发现?S证明了直接利用量子力学定律的计算设备可以在许多重要的计算问题上大大超过任何经典计算机。这激发了一项广泛的、持续的努力,既要实现这样的系统,又要了解它们的全部计算能力。本项目主要研究量子随机漫步和量子扩散。量子随机漫步是重要的算法工具,例如,在已知最有效的量子算法中出现的基本问题,如元素独特性(即确定元素是否存在的问题)?比如名字或号码?在长列表中出现两次)和对某些逻辑电路的评估。从实现的角度来看,量子随机漫步特别有吸引力,因为它们可能比通用量子计算机更容易忠实地实现。特别是,它们与量子扩散有直接联系,量子扩散是超冷原子物理学的一个领域。我们的目标是给出一个现实的量子随机漫步的第一个严格的分析,因此,一个明确的候选量子系统实现这种行走的指示。知识价值。在这个提议中,我们打算联合计算机科学和物理学的两个新的子领域,即量子随机漫步(QRW)和超冷原子系统。更准确地说,我们将探索如何开发用于研究简单模型中的量子随机漫步的工具,以适应与感兴趣的物理系统相对应的更现实的情况。相反,我们将研究现实的物理系统,这些系统可以被设计成与量子随机漫步可解的模型相对应。这两种互补的方法将导致对量子扩散至关重要的系统的复杂潜在行为的洞察。此外,在凝聚态物理、原子、分子和光学物理中有一个大类的系统?比如高温超导体或量子磁体?都被认为是由模型来描述的,比如玻色-哈伯德模型或它的许多推广之一,其中量子扩散起着关键作用。我们计划探索如何控制这样的系统,以便简化实验装置,如超冷里德伯原子或超冷原子-离子混合物,可以用来模拟量子随机漫步(因此量子扩散)的解已知的简单模型。更广泛的影响。我们将通过REU项目(我们已经向数十名学生介绍了真正的研究课题)和研究生研究指导,继续我们成功的培训工作。此外,pi将开发和教授一门多学科课程,名为?量子信息与计算。在为期5天的面向4 ~ 9年级学生的KAST (Kids Are Scientists Too)项目中,我们将建立以儿童为基础的新模块。美国人对科技和计算机的迷恋。此外,pi将继续参与达芬奇项目,这是一个向高中教师介绍工程、数学和物理主题的项目,可以整合到他们的高中科学课程中。b - 1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Russell其他文献
The Do-All problem with Byzantine processor failures
拜占庭处理器故障的万能问题
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:1.1
- 作者:
Antonio Fernández;Chryssis Georgiou;Alexander Russell;Alexander A. Shvartsman - 通讯作者:
Alexander A. Shvartsman
Adaptively Secure Random Beacons for Ungrindable Blockchains
不可研磨区块链的自适应安全随机信标
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
A. Kiayias;Cristopher Moore;S. Quader;Alexander Russell - 通讯作者:
Alexander Russell
Pharmaceutical Process Modeling
- DOI:
10.1208/s12249-022-02246-4 - 发表时间:
2022-03-16 - 期刊:
- 影响因子:4.000
- 作者:
Alexander Russell;Maxx Capece - 通讯作者:
Maxx Capece
A One-Time Stegosystem and Applications to Efficient Covert Communication
- DOI:
10.1007/s00145-012-9135-4 - 发表时间:
2012-10-25 - 期刊:
- 影响因子:2.200
- 作者:
Aggelos Kiayias;Yona Raekow;Alexander Russell;Narasimha Shashidhar - 通讯作者:
Narasimha Shashidhar
Exact and Approximation Algorithms for DNA Tag Set Design by Dragoş
Dragoş 用于 DNA 标签集设计的精确和近似算法
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Drago¸s N Trinc;Major Advisor;I. Măndoiu;Rajasekaran Associate;Advisor;Alexander Russell - 通讯作者:
Alexander Russell
Alexander Russell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Russell', 18)}}的其他基金
SaTC: CORE: Medium: Collaborative: Theory and Practice of Cryptosystems Secure Against Subversion
SaTC:核心:媒介:协作:密码系统安全防范颠覆的理论与实践
- 批准号:
1801487 - 财政年份:2018
- 资助金额:
$ 55.05万 - 项目类别:
Continuing Grant
AF: Medium: Collaborative Research: Quantum-Secure Cryptography and Fine-Grained Quantum Query Complexity
AF:中:协作研究:量子安全密码学和细粒度量子查询复杂性
- 批准号:
1763773 - 财政年份:2018
- 资助金额:
$ 55.05万 - 项目类别:
Continuing Grant
NeTS: Small: Collaborative Research: Advanced Algorithmic Tools for Discovery in Cognitive Radio Networks
NeTS:小型:协作研究:认知无线电网络中发现的高级算法工具
- 批准号:
1717432 - 财政年份:2017
- 资助金额:
$ 55.05万 - 项目类别:
Standard Grant
AF: Small: Collaborative Research: Representation-theoretic techniques for pseudorandomness and lower bounds
AF:小:协作研究:伪随机性和下界的表示理论技术
- 批准号:
1117427 - 财政年份:2011
- 资助金额:
$ 55.05万 - 项目类别:
Standard Grant
Collaborative Research: EMT/QIS: Quantum Algorithms and Post-Quantum Cryptography
合作研究:EMT/QIS:量子算法和后量子密码学
- 批准号:
0829917 - 财政年份:2008
- 资助金额:
$ 55.05万 - 项目类别:
Continuing Grant
QnTM: Collaborative Research EMT: The Quantum Complexity of Algebraic Problems
QnTM:协作研究 EMT:代数问题的量子复杂性
- 批准号:
0523456 - 财政年份:2005
- 资助金额:
$ 55.05万 - 项目类别:
Continuing Grant
Collaborative Research: Quantum Monte Carlo Algorithms and quantum circuit complexity
合作研究:量子蒙特卡罗算法和量子电路复杂性
- 批准号:
0218443 - 财政年份:2002
- 资助金额:
$ 55.05万 - 项目类别:
Standard Grant
ITR Collaborative Research: Complexity-Theoretic Applications of Fourier Analysis
ITR 合作研究:傅立叶分析的复杂性理论应用
- 批准号:
0220264 - 财政年份:2002
- 资助金额:
$ 55.05万 - 项目类别:
Standard Grant
CAREER: Efficient Cryptography with Provable Security Guarantees
职业:具有可证明安全保证的高效密码学
- 批准号:
0093065 - 财政年份:2001
- 资助金额:
$ 55.05万 - 项目类别:
Continuing Grant
相似国自然基金
铋基邻近双金属位点Type B异质结光热催化合成氨机制研究
- 批准号:
- 批准年份:2024
- 资助金额:30.0 万元
- 项目类别:省市级项目
智能型Type-I光敏分子构效设计及其抗耐药性感染研究
- 批准号:22207024
- 批准年份:2022
- 资助金额:20 万元
- 项目类别:青年科学基金项目
TypeⅠR-M系统在碳青霉烯耐药肺炎克雷伯菌流行中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
替加环素耐药基因 tet(A) type 1 变异体在碳青霉烯耐药肺炎克雷伯菌中的流行、进化和传播
- 批准号:LY22H200001
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向手性α-氨基酰胺药物的新型不对称Ugi-type 反应开发
- 批准号:LY22B020003
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
BMP9/BMP type I receptors 通过激活 PPARα保护心肌梗死的机制研究
- 批准号:LQ22H020003
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
C2H2-type锌指蛋白在香菇采后组织软化进程中的作用机制研究
- 批准号:32102053
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
血管阻断型Type-I光敏剂合成及其三阴性乳腺癌光诊疗
- 批准号:62120106002
- 批准年份:2021
- 资助金额:255 万元
- 项目类别:国际(地区)合作与交流项目
Chichibabin-type偶联反应在构建联氮杂芳烃中的应用
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
茶尺蠖Type-II环氧性信息素合成酶关键基因的鉴定及功能研究
- 批准号:LQ21C140001
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Classical and Quantum integrable hierarchies in Gromov-Witten type theories
Gromov-Witten 类型理论中的经典和量子可积层次结构
- 批准号:
23KF0114 - 财政年份:2023
- 资助金额:
$ 55.05万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Fabrication of epishell-type perovskite quantum dots by priority nucleation method
优先成核法制备外壳型钙钛矿量子点
- 批准号:
22H01846 - 财政年份:2022
- 资助金额:
$ 55.05万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of giant-shell quasi-type-II core-shell quantum dot scintillators
巨壳准II型核壳量子点闪烁体的研制
- 批准号:
21K18612 - 财政年份:2021
- 资助金额:
$ 55.05万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Synthesis and characterization of Sc2VO5-type fluorite superstructure a potential quantum spin liquid candidate
潜在量子自旋液体候选Sc2VO5型萤石超结构的合成与表征
- 批准号:
555525-2020 - 财政年份:2020
- 资助金额:
$ 55.05万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Tropospheric Photochemistry of Carbonyls: Elucidation of Quantum Yields to Quantify the Role of Ketones in Production of HOx and PAN-type Compounds in the Atmosphere
羰基化合物的对流层光化学:阐明量子产率以量化酮在大气中 HOx 和 PAN 型化合物生产中的作用
- 批准号:
1922619 - 财政年份:2019
- 资助金额:
$ 55.05万 - 项目类别:
Standard Grant
Photovoltaic properties in high-density self-organized type-II quantum dot superlattice
高密度自组织II型量子点超晶格的光伏特性
- 批准号:
19H02541 - 财政年份:2019
- 资助金额:
$ 55.05万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on Properties of Quantum Heterostructures by Using High Quality alpha-type Gallium Oxide Thin Films
利用高质量α型氧化镓薄膜研究量子异质结构特性
- 批准号:
18K04958 - 财政年份:2018
- 资助金额:
$ 55.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Highly functionalized p-i-n type quantum dot based hybrid solar cells
高度功能化的p-i-n型量子点混合太阳能电池
- 批准号:
17H03536 - 财政年份:2017
- 资助金额:
$ 55.05万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Photophysics of Intraband Transitions in n-type Colloidal Quantum Dots
n 型胶体量子点带内跃迁的光物理学
- 批准号:
1708378 - 财政年份:2017
- 资助金额:
$ 55.05万 - 项目类别:
Standard Grant
Collaborative Research: IDBR Type A: QSTORM-AO - Wavefront-shaping light-sheet microscopy with photoswitchable quantum dots for superresolution imaging in thick tissue
合作研究:IDBR A 型:QSTORM-AO - 具有光控量子点的波前整形光片显微镜,用于厚组织中的超分辨率成像
- 批准号:
1555541 - 财政年份:2016
- 资助金额:
$ 55.05万 - 项目类别:
Continuing Grant