Collaborative Research: Efficient Organic Solar Cells by Control of Nanostructures

合作研究:通过控制纳米结构实现高效有机太阳能电池

基本信息

  • 批准号:
    0524295
  • 负责人:
  • 金额:
    $ 8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-09-01 至 2008-08-31
  • 项目状态:
    已结题

项目摘要

0524295GuptaIntellectual Merit. New organic components, efficient and cost-effective ways of assembling these components at the nanometer length scale, and an improved understanding of charge transport are needed for the development of efficient organic solar cells that will be cost competitive with fossil fuel technology for power generation. To achieve these properties, the photovoltaic effect in organic materials relies on three fundamental processes: 1) absorption of a photon to create a bound electron-hole pair (exciton), 2) dissociation of the exciton, and 3) transport of the electron and hole to the cathode and anode, respectively, to yield the photocurrent/voltage. There still exists a significant challenge to design new molecular components and new processing methods tailored for these components as well as to develop a deeper understanding of the charge transport process so that organic solar cells that are inexpensive and efficient can be fabricated. The objective for this proposal is to employ new fullerene and related endohedral metallofullerene derivatives to fabricate bulk heterojunctions devices with unprecedented control of the composition gradient and to study electron and hole transport in these devices in order to maximize photoconversion efficiency. Two specific aims are proposed - 1) Measure and model charge transport in photovoltaic films with tailored composition gradients; and 2) Fabricate, characterize, and optimize efficient organic solar cell devices. New combinations of electron donors and acceptors that are matched with tailored composition gradients in films are expected to lead to high performance, organic photovoltaic devices with improved photoconversion efficiencies. Broader Impact. The development of low cost and efficient organic solar cells will lead to a number of applications that will have a significant benefit to society. This research will also advance discovery while promoting teaching and learning at the high school, undergraduate and graduate levels. This includes: 1) development of nanoscience demonstrations for Virginia Tech's Society of Physics Students outreach programs to rural, southwestern Virginia high schools, 2) coordinated recruiting of graduate students from under-represented groups with Virginia Tech's Office of Graduate Student Recruiting into a highly interdisciplinary research program, and 3) incorporation of results from this research into a course on nanotechnology taught by one of the PIs. The results of this research will be widely disseminated to the scientific and lay communities in peer-reviewed journals and in presentations at multidisciplinary conferences, in undergraduate symposia, to rural VA high school students, and in course web pages.
0524295古普塔智力功绩。为了开发高效的有机太阳能电池,需要新的有机组件、在纳米长度尺度上组装这些组件的高效且具有成本效益的方法,以及对电荷传输的更好理解,从而与化石燃料发电技术具有成本竞争力。为了实现这些特性,有机材料中的光伏效应依赖于三个基本过程:1)吸收光子以产生束缚的电子-空穴对(激子),2)激子的解离,以及3)电子和空穴分别传输到阴极和阳极以产生光电流/电压。仍然存在设计新的分子组分和为这些组分定制的新的加工方法以及发展对电荷传输过程的更深入理解以使得可以制造廉价且高效的有机太阳能电池的重大挑战。该提案的目的是采用新的富勒烯和相关的内嵌金属富勒烯衍生物来制造具有前所未有的组成梯度控制的体异质结器件,并研究这些器件中的电子和空穴传输,以最大限度地提高光转换效率。提出了两个具体目标:1)测量和建模具有定制组成梯度的光伏薄膜中的电荷传输;以及2)制造、表征和优化高效的有机太阳能电池器件。与膜中定制的组成梯度相匹配的电子供体和受体的新组合有望产生具有改善的光转换效率的高性能有机光伏器件。 更广泛的影响。低成本和高效有机太阳能电池的开发将导致许多应用,这些应用将对社会产生重大效益。这项研究还将推进发现,同时促进高中,本科和研究生水平的教学和学习。这包括:1)为弗吉尼亚理工大学的物理学生社会推广计划发展纳米科学示范到农村,弗吉尼亚州西南部的高中,2)与弗吉尼亚理工大学的研究生招聘办公室协调招聘来自代表性不足的群体的研究生进入一个高度跨学科的研究计划,以及3)将这项研究的结果纳入一个由PI教授的纳米技术课程。这项研究的结果将被广泛传播到科学界和外行在同行评议的期刊和多学科会议上的演示文稿,在本科生座谈会,农村VA高中学生,并在课程网页。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mool Gupta其他文献

Mool Gupta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mool Gupta', 18)}}的其他基金

Collaborative Research: Fundamental Studies of Carrier Selective Passivating Contacts for Efficient Photovoltaic Devices using Laser Processing and Atomic Resolution Interfaces
合作研究:利用激光加工和原子分辨率接口对高效光伏器件的载流子选择性钝化接触进行基础研究
  • 批准号:
    2005098
  • 财政年份:
    2020
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: Thermoelectric Devices Based on Laser Sintering of Doped SiGe Nanoparticles
合作研究:基于激光烧结掺杂SiGe纳米粒子的热电器件
  • 批准号:
    1408443
  • 财政年份:
    2014
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Laser Processing Method to Reduce Solar Cell Manufacturing Cost and Enhancement of Performance
激光加工方法降低太阳能电池制造成本并提高性能
  • 批准号:
    1436775
  • 财政年份:
    2014
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
AIR Option 1: Technology Translation - Transition of Replicated Laser Micro-textured Surface Technology Through Scalable Process and Reliability Testing
AIR 选项 1:技术转化 - 通过可扩展工艺和可靠性测试实现复制激光微纹理表面技术的转变
  • 批准号:
    1343450
  • 财政年份:
    2013
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
I/UCRC: Phase III: Center for Lasers and Plasmas for Advanced Manufacturing (LPAM)
I/UCRC:第三阶段:先进制造激光和等离子体中心 (LPAM)
  • 批准号:
    1338917
  • 财政年份:
    2013
  • 资助金额:
    $ 8万
  • 项目类别:
    Continuing Grant
I-Corps: Replication of Laser-Generated Surface Textures for Anti-Icing and Sun-Light-Trapping Applications.
I-Corps:复制激光生成的表面纹理,用于防冰和太阳光捕获应用。
  • 批准号:
    1157881
  • 财政年份:
    2011
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
National Science Foundation Industry University Cooperative Research Center for Lasers and Plasmas for Advanced Manufacturing (LAM)
美国国家科学基金会产学合作先进制造激光与等离子体研究中心(LAM)
  • 批准号:
    0823780
  • 财政年份:
    2008
  • 资助金额:
    $ 8万
  • 项目类别:
    Continuing Grant
Establish a NSF Industry/University Cooperative Research Center for Lasers & Plasmas for Advanced Manufacturing (LAM)
建立 NSF 产学合作激光研究中心
  • 批准号:
    0537883
  • 财政年份:
    2005
  • 资助金额:
    $ 8万
  • 项目类别:
    Continuing Grant
SGER: Acoustic Memory in LiNbo3 and Domian Structures
SGER:LiNbo3 和 Domian 结构中的声学记忆
  • 批准号:
    0531620
  • 财政年份:
    2005
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
GOALI: High Efficiency, Large Area Solar Cell Devices Based on Crystalline Si Thin Films by Low Temperture Growth and Solid State Laser Crystallization
目标:基于低温生长和固态激光结晶的晶体硅薄膜的高效率、大面积太阳能电池器件
  • 批准号:
    0535827
  • 财政年份:
    2005
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343606
  • 财政年份:
    2024
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Materials-Manufacturing-Controls Framework for Efficient and Resilient Manufacturing Systems
协作研究:高效、弹性制造系统的集成材料制造控制框架
  • 批准号:
    2346650
  • 财政年份:
    2024
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Materials-Manufacturing-Controls Framework for Efficient and Resilient Manufacturing Systems
协作研究:高效、弹性制造系统的集成材料制造控制框架
  • 批准号:
    2346651
  • 财政年份:
    2024
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
  • 批准号:
    2312886
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
  • 批准号:
    2312884
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium: Efficient Compilation for Dynamically Reconfigurable Atom Arrays
合作研究:FET:中:动态可重构原子阵列的高效编译
  • 批准号:
    2313084
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309547
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了