Extremal Problems in Complex Analysis and Potential Theory

复分析与势理论中的极值问题

基本信息

  • 批准号:
    0525339
  • 负责人:
  • 金额:
    $ 1.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-12-09 至 2007-05-31
  • 项目状态:
    已结题

项目摘要

DMS 0412908Alexander SolyninExtremal Problems in Complex Analysis and Potential TheoryABSTRACTThe proposer will continue his work on extremal problems. This work follows several avenues to attack a number of recent challenging problems as well as some old unsolved ones. By applying J. Jenkins' theory of extremal partitions, we will determine all systems of simply connected domains, which have a prescribed combinatorics of boundaries and carry proportional harmonic measures. We also plan to use quadratic differentials to solve the problem of determining the shape of droplets of perfectly conducting fluid that are held in equilibrium by electrostatic and pressure forces balanced against surface tension. We plan to study several problems concerning harmonic measures. For example, we want to study the problem of finding the minimal ``damage'' to solutionsof the Laplace equation, when the original domain is damaged by inserting an obstacle from a given set. We also plan to use quadratic differential techniques to continue work with R. Barnard to study R. Robinson's 1949 conjecture concerning the radius of univalence of the Robinson operator in the classical class S of univalent functions. In 1990 we verified a conjecture of G. Polya and G. Szego made in 1951 by constructing the first continuous symmetrization transforming a bounded domain D into its symmetrized domain D*. We plan to work on extending some of our earlier results on symmetrization to the case of Steiner symmetrization with respect to hyperplanes of any dimension k. We also plan to use our polarization transformation to resolve the Martingale problem "How many Brownian policemen does it take to arrest a Brownian prisoner? We also propose to investigate free boundary problems for the Poincare metric, harmonic measure, and capacity of a condenser, as well as the minimal area and minimal perimeter problems in conformal mapping and other problems in symmetrization.
亚历山大·索利尼复分析与势理论中的极值问题[摘要]申请者将继续他在极值问题上的研究。这项工作遵循几个途径来解决一些最近具有挑战性的问题以及一些旧的未解决的问题。通过应用詹金斯的极值划分理论,我们将确定所有单连通域系统,这些系统具有规定的边界组合并携带比例调和测度。我们还计划使用二次微分来解决确定完美导电流体液滴形状的问题,这些液滴由静电和压力力与表面张力平衡保持平衡。我们计划研究几个有关谐波措施的问题。例如,我们想研究的问题是,当从给定集合中插入障碍物破坏原始域时,如何找到对拉普拉斯方程解的最小“损害”。我们还计划利用二次微分技术继续与R. Barnard合作,研究R. Robinson在1949年关于经典单价函数S类中Robinson算子的一价半径的猜想。1990年,我们通过构造第一个连续对称,验证了G. Polya和G. Szego在1951年提出的一个猜想,该连续对称将有界域D转化为它的对称域D*。我们计划将我们早期关于对称的一些结果扩展到关于任何维度k的超平面的斯坦纳对称的情况下。我们还计划使用我们的极化变换来解决鞅问题“逮捕一个布朗囚犯需要多少布朗警察?”我们还研究了庞加莱度规、调和测度和电容的自由边界问题,以及保角映射中的最小面积和最小周长问题和对称化中的其他问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Solynin其他文献

Alexander Solynin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Solynin', 18)}}的其他基金

Complex Analysis, Potential Theory, Special Functions and Applications, November 6-9, 2014
复分析、势论、特殊函数及应用,2014 年 11 月 6-9 日
  • 批准号:
    1501568
  • 财政年份:
    2014
  • 资助金额:
    $ 1.23万
  • 项目类别:
    Standard Grant
Topics in extremal problems in complex analysis and potential theory
复分析和势论中的极值问题专题
  • 批准号:
    1001882
  • 财政年份:
    2010
  • 资助金额:
    $ 1.23万
  • 项目类别:
    Continuing Grant
Extremal Problems in Complex Analysis and Potential Theory
复分析与势理论中的极值问题
  • 批准号:
    0412908
  • 财政年份:
    2004
  • 资助金额:
    $ 1.23万
  • 项目类别:
    Standard Grant

相似海外基金

Next-Generation Solvers for Complex Microwave Engineering Problems
复杂微波工程问题的下一代求解器
  • 批准号:
    DP240102682
  • 财政年份:
    2024
  • 资助金额:
    $ 1.23万
  • 项目类别:
    Discovery Projects
Robust Derivative-Free Algorithms for Complex Optimisation Problems
用于复杂优化问题的鲁棒无导数算法
  • 批准号:
    DE240100006
  • 财政年份:
    2024
  • 资助金额:
    $ 1.23万
  • 项目类别:
    Discovery Early Career Researcher Award
Quantum Annealing to Solve Complex Optimization Problems Using Negative Inductance and Thermal Fluctuations
利用负电感和热波动的量子退火解决复杂的优化问题
  • 批准号:
    23H05447
  • 财政年份:
    2023
  • 资助金额:
    $ 1.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Unravel machine learning blackboxes -- A general, effective and performance-guaranteed statistical framework for complex and irregular inference problems in data science
揭开机器学习黑匣子——针对数据科学中复杂和不规则推理问题的通用、有效和性能有保证的统计框架
  • 批准号:
    2311064
  • 财政年份:
    2023
  • 资助金额:
    $ 1.23万
  • 项目类别:
    Standard Grant
Fundamentals of Quantum Annealer for Solving Complex Optimization Problems Using Negative Inductance and Thermal Fluctuations
使用负电感和热涨落解决复杂优化问题的量子退火器基础知识
  • 批准号:
    23H00180
  • 财政年份:
    2023
  • 资助金额:
    $ 1.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Complex Methods in Spectral and Scattering Problems
光谱和散射问题的复杂方法
  • 批准号:
    2244801
  • 财政年份:
    2023
  • 资助金额:
    $ 1.23万
  • 项目类别:
    Standard Grant
An Efficient Computational Solver for Complex Engineering Problems
复杂工程问题的高效计算求解器
  • 批准号:
    DE230101281
  • 财政年份:
    2023
  • 资助金额:
    $ 1.23万
  • 项目类别:
    Discovery Early Career Researcher Award
CRII: AF: Variational Inequality and Saddle Point Problems with Complex Constraints
CRII:AF:具有复杂约束的变分不等式和鞍点问题
  • 批准号:
    2245705
  • 财政年份:
    2023
  • 资助金额:
    $ 1.23万
  • 项目类别:
    Standard Grant
Problems in complex and harmonic analysis related to weighted norm inequalities
与加权范数不等式相关的复数和调和分析问题
  • 批准号:
    RGPIN-2021-03545
  • 财政年份:
    2022
  • 资助金额:
    $ 1.23万
  • 项目类别:
    Discovery Grants Program - Individual
Optimization Models and Algorithms for Complex Production Planning Problems
复杂生产计划问题的优化模型和算法
  • 批准号:
    RGPIN-2019-05759
  • 财政年份:
    2022
  • 资助金额:
    $ 1.23万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了