GOALI: Biomimetic Design of Fibrillar Interfaces for Adhesion, Tribology, and other Surface Properties
GOALI:针对粘附力、摩擦学和其他表面特性的纤维界面仿生设计
基本信息
- 批准号:0527785
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-09-15 至 2009-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract 0527785Among lizards and insects, Nature has evolved surface structures for controlled adhesion, tribology, and other surface properties that have no counterparts among man-made materials. The ability of lizards, for example, to adhere to a variety of rough and smooth surfaces using relatively stiff materials is remarkable. A common feature for contact and universal adhesion against an indeterminate surface, with important variations based on species, is the use of a hierarchical fibrillar structure with a plate-like spatular terminal element. It appears from recent studies that its unique surface properties, such as adhesion, tribology, and re-usability, result from optimized architectural design. This project aims to develop materials with fibrillar interfaces that mimic surface structures in lizards and insects.This work is being conducted jointly by three academic researchers working in close collaboration with an industrial research group at the DuPont Company. Their work requires the influence of several disciplines. Biological studies are undertaken to examine the details of the designs Nature has evolved and the materials she uses. The investigators develop theoretical models to understand how materials properties and architecture relate to performance. Phenomena that need to be understood are the enhanced contact compliance offered by these materials, constraints due to phenomena such as lateral collapse under the influence of surface forces, and mechanisms by which energy dissipation is enhanced during interfacial separation. These are converted into design criteria for biomimetic structures. The investigators fabricate fibrillar structures based on these design criteria using micro-lithographic techniques and test their performance as surfaces with useful properties.If successful in its ultimate aim, this program will provide society with an entirely new class of fastener materials. Anticipated properties, such as one-sidedness, re-usability, low rate-dependence, and designed directionality, form a unique set not accessible by extant fasteners, for example, pressure sensitive adhesives and hook/loop fasteners (e.g. Velcro). We expect the new material will find use in applications as diverse as apparel, semiconductor handling, and robotics. The project will train graduate students to work in a highly interdisciplinary manner. It balances high scientific quality and training with industrial relevance and interest.
摘要0527785在蜥蜴和昆虫中,大自然进化出了一些表面结构,以控制附着、摩擦学和其他在人造材料中没有的表面特性。例如,蜥蜴使用相对坚硬的材料附着在各种粗糙和光滑的表面上的能力是非常了不起的。在不确定的表面上进行接触和普遍粘附的一个共同特征(根据物种有重要的变化)是使用具有板状铲状末端元件的分层纤维结构。从最近的研究来看,其独特的表面性能,如附着力、摩擦学和可重用性,源于优化的结构设计。该项目旨在开发具有纤维界面的材料,以模仿蜥蜴和昆虫的表面结构。这项工作是由三位学术研究人员与杜邦公司的一个工业研究小组密切合作共同进行的。他们的工作需要几门学科的影响。进行生物学研究是为了检查大自然进化设计的细节和她使用的材料。研究人员开发理论模型,以了解材料特性和结构如何与性能相关。需要了解的现象是这些材料提供的增强接触依从性,由于表面力影响下的侧向坍塌等现象造成的约束,以及在界面分离过程中增强能量耗散的机制。这些被转化为仿生结构的设计标准。研究人员利用微光刻技术根据这些设计标准制造纤维结构,并测试其作为具有有用性能的表面的性能。如果最终目标成功,该计划将为社会提供一种全新的紧固件材料。预期的性能,如单侧性、可重用性、低速率依赖性和设计的方向性,形成了现有紧固件无法达到的独特组合,例如压敏粘合剂和钩/环紧固件(例如魔术贴)。我们希望这种新材料将在服装、半导体处理和机器人等各种应用中得到应用。该项目将培养研究生以高度跨学科的方式工作。它平衡了高科学质量和培训与工业相关性和兴趣。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anand Jagota其他文献
On track with nanotubes
在纳米管方面进展顺利
- DOI:
10.1038/nnano.2013.299 - 发表时间:
2014-01-06 - 期刊:
- 影响因子:34.900
- 作者:
Anand Jagota - 通讯作者:
Anand Jagota
Anand Jagota的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anand Jagota', 18)}}的其他基金
Role of the Glycocalyx and Spike-Like Proteins in Virus-Cell Adhesion
糖萼和刺突状蛋白在病毒-细胞粘附中的作用
- 批准号:
2226779 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
DMREF: DNA-Nanocarbon Hybrid Materials for Perception-Based, Analyte-Agnostic Sensing
DMREF:用于基于感知、与分析物无关的传感的 DNA-纳米碳混合材料
- 批准号:
2323759 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
PIPP Phase I: Dynamics of Pandemic Spread and Prevention in Indigenous Communities
PIPP 第一阶段:原住民社区流行病传播和预防的动态
- 批准号:
2200066 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Multiphase Modelling and Experimental Characterization of Respiratory Microdroplet Suspension and Resuspension Dynamics Near Surfaces
近表面呼吸微滴悬浮和再悬浮动力学的多相建模和实验表征
- 批准号:
2039310 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
LEAP-HI/GOALI: Meso-Scale Mechanisms for Friction in Structured Soft Materials: Elastic Hysteresis and Dislocation Arrays
LEAP-HI/GOALI:结构化软材料中的细观摩擦机制:弹性磁滞和位错阵列
- 批准号:
1854572 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
TIM Protein-Mediated Ebola Virus-Host Cell Adhesion: Experiments and Models
TIM 蛋白介导的埃博拉病毒-宿主细胞粘附:实验和模型
- 批准号:
1804117 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
GOALI/Collaborative Research: Designing Structures to Enhance Friction of Rubbery Materials
GOALI/合作研究:设计结构以增强橡胶材料的摩擦
- 批准号:
1538002 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
2015 Gordon Research Conference and Symposium on the Science of Adhesion; Mount Holyoke College, South Hadley, Massachusetts; July 25-31, 2015
2015年戈登研究会议暨粘附科学研讨会;
- 批准号:
1504092 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
IDR: Coupling Theory and Experiment to Quantify Biomolecule-Nanomaterial Interactions
IDR:耦合理论和实验来量化生物分子-纳米材料相互作用
- 批准号:
1014960 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
NIRT- GOALI: Solution-Based Dispersion, Sorting, and Placement of Carbon Nanotubes
NIRT- GOALI:基于解决方案的碳纳米管分散、分选和放置
- 批准号:
0609050 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Synergising nanoemulsion and lipid biomimetic design for advanced delivery
协同纳米乳液和脂质仿生设计以实现先进的递送
- 批准号:
LP220200944 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Linkage Projects
LEAP-HI: Design, Fabrication, and Multiscale Understanding of Biolubricants Using Synthetic Biology, Glycoengineering, and Biomimetic Synthesis
LEAP-HI:利用合成生物学、糖工程和仿生合成对生物润滑剂进行设计、制造和多尺度理解
- 批准号:
2245367 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Rational PROTAC design enabled by integrated in silico molecular modeling and in vitro biomimetic affinity assessment
通过集成计算机分子建模和体外仿生亲和力评估实现合理的 PROTAC 设计
- 批准号:
10728205 - 财政年份:2023
- 资助金额:
-- - 项目类别:
CAREER: Rationale Design of Autonomous Biomimetic Wearable Sensor for Personalized Molecular Monitoring of Long COVID
职业:用于长新冠病毒个性化分子监测的自主仿生可穿戴传感器的基本原理设计
- 批准号:
2145802 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Design and fabrication of structured microfibers for the development of biomimetic tissues
用于开发仿生组织的结构化微纤维的设计和制造
- 批准号:
504195013 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grants
Applying Natural Design Principles For Biomimetic Robotic Control
将自然设计原理应用于仿生机器人控制
- 批准号:
2849790 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Turning Theory into Practice: Robust Hierarchical Biomimetic Composites by Design using Direct Write Assembly and Biomineralization-Inspired Interfaces
将理论转化为实践:使用直接写入组装和生物矿化启发的接口设计稳健的分层仿生复合材料
- 批准号:
RGPIN-2016-03942 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
RAPID: Rational Design of Biomimetic Virus-Trapping Polymers
RAPID:仿生病毒捕获聚合物的合理设计
- 批准号:
2034567 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Turning Theory into Practice: Robust Hierarchical Biomimetic Composites by Design using Direct Write Assembly and Biomineralization-Inspired Interfaces
将理论转化为实践:使用直接写入组装和生物矿化启发的接口设计稳健的分层仿生复合材料
- 批准号:
RGPIN-2016-03942 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Using biomimetic technology as an approach to design efficient load-bearing exoskeletons for the Canadian Armed Forces: effect on motor performance and role of motor learning
使用仿生技术为加拿大武装部队设计高效的承载外骨骼:对运动性能的影响和运动学习的作用
- 批准号:
521736-2017 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Department of National Defence / NSERC Research Partnership