TIM Protein-Mediated Ebola Virus-Host Cell Adhesion: Experiments and Models

TIM 蛋白介导的埃博拉病毒-宿主细胞粘附:实验和模型

基本信息

  • 批准号:
    1804117
  • 负责人:
  • 金额:
    $ 25.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Viruses cause diseases ranging from the common cold to the deadly and highly infectious Ebola disease. Their "modus operandi" is to enter healthy cells, often like a Trojan Horse, by hijacking normal physiological processes, tricking the cell to let them in. For this reason, a principal difficulty in designing therapies against viruses lies in the fact that attempts to stop them from entering a cell are also likely to affect normal physiological processes. For example, the Ebola virus infects healthy cells by disguising itself as debris (wastes or remains) from dead cells. Healthy cells whose normal function is to clear up this debris mistakenly take up Ebola and are thus infected. But there are always some differences between a virus and debris particles suggesting that, if studied carefully, it might be possible to design therapies that can block specific virus entry while leaving normal physiological processes essentially intact. In order to be successful in this attempt, it is necessary to understand virus uptake processes in quantitative detail both experimentally and theoretically, and particularly the latter, which is the main goal of this project. Building on separate studies that use microscope based technologies to measure binding forces between molecules, the focus of this project is to develop understanding of the behavior of collections of adhesion molecules (proteins on cell surfaces that cause cells to bind to other cells or particles), and ultimately to develop a predictive model for how an entire virus particle attaches to a cell prior to its uptake. An important part of this work is modeling the deformation of virus and cell particles in order to quantitatively measure their properties. If successful, this project will contribute to establishing an experimentally validated, quantitative connection between biology based models for virus entry into cells and the properties of the virus and the cell. The interdisciplinary nature of this research program will provide an excellent educational and research opportunity for graduate and undergraduate students. Working with the Da Vinci Science Center in Allentown, the investigators will design a new exhibit demonstrating the physical and mechanical details of virus uptake and how its study could lead to potential therapies or a cure. (The Da Vinci Science Center is an independent non-profit organization that promotes hands-on science learning through inquiry, highlights vibrant and important career opportunities in science available to every young person, and encourages all people to be curious and creative.) The goal of this project is to establish an experimentally informed predictive and quantitative model of the Ebola Virus (EBOV)-host cell interactions at the molecular through single-virus levels. While EBOV-host cell attachment has been shown to depend critically on the molecular biophysics of interaction between receptors on the cell surface and the outer coat of the virus, the quantitative understanding essential for guiding the development of therapies that would prevent EBOV from attaching to, and thus from entering a cell, is completely lacking. Recent work has established the importance of TIM family proteins and the geometry and mechanical properties of its mucin-like stalk domain (MLD). Building on these recent findings, further progress can be made by using experimental and theoretical molecular biophysics to uncover a quantitative understanding of the molecular, cellular, and biophysical mechanisms of EBOV attachment to a host cell. Building on separate studies that utilize single-molecule force spectroscopy to characterize experimentally how TIM family proteins interact with EBOV, this project will develop biophysical models that show how single-molecule biomechanical properties, and how the properties of the MLD, such as its length, rigidity, and charge density, control TIM mediated cellular/viral membrane adhesion and engulfment. The model will be developed in three phases. 1) At the Intermolecular Scale, the adhesion between a single TIM-1 and the viral membrane is studied using coarse-grained Brownian Dynamics Models to predict interaction potentials. 2) At the Intermediate Scale, the glycocalyx will be added to the cell surface and glycoproteins will be added on the virus surface to establish the role of the mechanical properties of the MLD stalk, using a course grained model solved with Brownian Dynamics at 300K. 3) At the Mechanics of Whole Virus and Internalization Scale, findings at the Intermolecular and Intermediate Scales will be incorporated at the scale of the viral particles and deformable membranes will be added, with the goal of describing the virus adhesion process, including effects due to membrane bending and tension, using a combination of semi-analytic models and coarse-grained models. The project will thus elucidate quantitatively - for the first time - the biophysical mechanism of EBOV-host cell interaction, providing potential new targets for antiviral drug development. While the focus of the focus of this project is on the EBOV, the approach taken will be applicable to other related virus-host cell interactions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
病毒引起的疾病从普通感冒到致命的高度传染性埃博拉病毒。 他们的“作案手法”是进入健康细胞,通常像特洛伊木马一样,通过劫持正常的生理过程,欺骗细胞让他们进入。 因此,设计抗病毒疗法的主要困难在于,试图阻止病毒进入细胞也可能影响正常的生理过程。 例如,埃博拉病毒通过伪装成死亡细胞的碎片(废物或残留物)来感染健康细胞。 正常功能是清除这些碎片的健康细胞错误地摄取了埃博拉病毒,从而被感染。 但病毒和碎片颗粒之间总是存在一些差异,这表明,如果仔细研究,有可能设计出可以阻止特定病毒进入的治疗方法,同时保持正常的生理过程基本不变。 为了在这一尝试中取得成功,有必要在实验和理论上定量地了解病毒摄取过程,特别是后者,这是本项目的主要目标。 基于使用基于显微镜的技术来测量分子之间的结合力的单独研究,该项目的重点是发展对粘附分子(细胞表面上的蛋白质,导致细胞与其他细胞或颗粒结合)集合的行为的理解,并最终开发一个预测模型,用于整个病毒颗粒如何在其吸收之前附着到细胞上。 这项工作的一个重要部分是对病毒和细胞颗粒的变形进行建模,以便定量测量它们的特性。 如果成功,该项目将有助于建立一个实验验证,定量之间的联系基于生物学模型的病毒进入细胞和病毒和细胞的属性。该研究计划的跨学科性质将为研究生和本科生提供极好的教育和研究机会。 研究人员将与阿伦敦的达芬奇科学中心合作,设计一个新的展览,展示病毒吸收的物理和机械细节,以及其研究如何导致潜在的治疗或治愈。 (The达芬奇科学中心是一个独立的非营利组织,通过探究促进实践科学学习,突出了每个年轻人都能获得的充满活力和重要的科学职业机会,并鼓励所有人保持好奇心和创造力。该项目的目标是建立一个实验知情的预测和定量模型的埃博拉病毒(EBOV)-宿主细胞相互作用的分子,通过单病毒水平。 虽然EBOV-宿主细胞附着已被证明严重依赖于细胞表面上的受体与病毒外壳之间相互作用的分子生物物理学,但对于指导开发将阻止EBOV附着并因此进入细胞的疗法至关重要的定量理解完全缺乏。 最近的工作已经确立了TIM家族蛋白的重要性及其粘蛋白样茎结构域(MLD)的几何和机械性质。基于这些最近的发现,可以通过使用实验和理论分子生物物理学来揭示EBOV附着到宿主细胞的分子、细胞和生物物理机制的定量理解来取得进一步的进展。 基于利用单分子力谱的单独研究,以实验方式表征TIM家族蛋白如何与EBOV相互作用,该项目将开发生物物理模型,显示单分子生物力学特性以及MLD的特性,如其长度,刚度和电荷密度,如何控制TIM介导的细胞/病毒膜粘附和吞噬。 该模型将分三个阶段开发。 1)在分子间尺度上,单个TIM-1和病毒膜之间的粘附使用粗粒度的布朗动力学模型来预测相互作用势。 2)在中等规模下,将糖萼添加到细胞表面,并将糖蛋白添加到病毒表面,以使用在300 K下用布朗动力学求解的粗粒模型来建立MLD茎的机械性质的作用。 3)在完整病毒和内化尺度的力学中,分子间和中间尺度的发现将在病毒颗粒的尺度上合并,并将添加可变形膜,目的是描述病毒粘附过程,包括由于膜弯曲和张力的影响,使用半解析模型和粗粒度模型的组合。 因此,该项目将首次定量阐明EBOV-宿主细胞相互作用的生物物理机制,为抗病毒药物开发提供潜在的新靶点。 虽然该项目的重点是EBOV,但所采取的方法将适用于其他相关的病毒-宿主细胞相互作用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Contribution of the von Willebrand factor/ADAMTS13 imbalance to COVID-19 coagulopathy
冯·维勒布兰德因子/ADAMTS13 失衡对 COVID-19 凝血病的影响
Differential Interactions between Human ACE2 and Spike RBD of SARS-CoV-2 Variants of Concern
Length of mucin-like domains enhances cell-Ebola virus adhesion by increasing binding probability
粘蛋白样结构域的长度通过增加结合概率来增强细胞与埃博拉病毒的粘附
  • DOI:
    10.1016/j.bpj.2021.01.025
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Cui, Xinyu;Lapinski, Nicole;Zhang, Xiaohui;Jagota, Anand
  • 通讯作者:
    Jagota, Anand
Adhesive contact between cylindrical (Ebola) and spherical (SARS-CoV-2) viral particles and a cell membrane
圆柱形(埃博拉)和球形(SARS-CoV-2)病毒颗粒与细胞膜之间的粘附接触
  • DOI:
    10.1007/s42558-020-00026-3
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang, Jiajun;Lapinski, Nicole;Zhang, Xiaohui;Jagota, Anand
  • 通讯作者:
    Jagota, Anand
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anand Jagota其他文献

On track with nanotubes
在纳米管方面进展顺利
  • DOI:
    10.1038/nnano.2013.299
  • 发表时间:
    2014-01-06
  • 期刊:
  • 影响因子:
    34.900
  • 作者:
    Anand Jagota
  • 通讯作者:
    Anand Jagota

Anand Jagota的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anand Jagota', 18)}}的其他基金

Role of the Glycocalyx and Spike-Like Proteins in Virus-Cell Adhesion
糖萼和刺突状蛋白在病毒-细胞粘附中的作用
  • 批准号:
    2226779
  • 财政年份:
    2023
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Standard Grant
DMREF: DNA-Nanocarbon Hybrid Materials for Perception-Based, Analyte-Agnostic Sensing
DMREF:用于基于感知、与分析物无关的传感的 DNA-纳米碳混合材料
  • 批准号:
    2323759
  • 财政年份:
    2023
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Standard Grant
PIPP Phase I: Dynamics of Pandemic Spread and Prevention in Indigenous Communities
PIPP 第一阶段:原住民社区流行病传播和预防的动态
  • 批准号:
    2200066
  • 财政年份:
    2022
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Standard Grant
Multiphase Modelling and Experimental Characterization of Respiratory Microdroplet Suspension and Resuspension Dynamics Near Surfaces
近表面呼吸微滴悬浮和再悬浮动力学的多相建模和实验表征
  • 批准号:
    2039310
  • 财政年份:
    2021
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Standard Grant
LEAP-HI/GOALI: Meso-Scale Mechanisms for Friction in Structured Soft Materials: Elastic Hysteresis and Dislocation Arrays
LEAP-HI/GOALI:结构化软材料中的细观摩擦机制:弹性磁滞和位错阵列
  • 批准号:
    1854572
  • 财政年份:
    2019
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Designing Structures to Enhance Friction of Rubbery Materials
GOALI/合作研究:设计结构以增强橡胶材料的摩擦
  • 批准号:
    1538002
  • 财政年份:
    2015
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Standard Grant
2015 Gordon Research Conference and Symposium on the Science of Adhesion; Mount Holyoke College, South Hadley, Massachusetts; July 25-31, 2015
2015年戈登研究会议暨粘附科学研讨会;
  • 批准号:
    1504092
  • 财政年份:
    2015
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Standard Grant
IDR: Coupling Theory and Experiment to Quantify Biomolecule-Nanomaterial Interactions
IDR:耦合理论和实验来量化生物分子-纳米材料相互作用
  • 批准号:
    1014960
  • 财政年份:
    2010
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Standard Grant
NIRT- GOALI: Solution-Based Dispersion, Sorting, and Placement of Carbon Nanotubes
NIRT- GOALI:基于解决方案的碳纳米管分散、分选和放置
  • 批准号:
    0609050
  • 财政年份:
    2006
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Standard Grant
GOALI: Biomimetic Design of Fibrillar Interfaces for Adhesion, Tribology, and other Surface Properties
GOALI:针对粘附力、摩擦学和其他表面特性的纤维界面仿生设计
  • 批准号:
    0527785
  • 财政年份:
    2005
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Standard Grant

相似国自然基金

有翅与无翅蚜虫差异分泌唾液蛋白Cuticular protein在调控植物细胞壁免疫中的功能
  • 批准号:
    32372636
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
抑制Protein Kinase D促进胚胎干细胞自我更新的分子机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
C2 DOMAIN PROTEIN 1 (C2DP1)基因家族在植物开花调控中的功能研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
凡纳滨对虾Laccase-like protein非酶活依赖参与抗WSSV免疫的分子机制
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
  • 批准号:
    32170319
  • 批准年份:
    2021
  • 资助金额:
    58.00 万元
  • 项目类别:
    面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
玉米基因Dirigent protein 4的克隆和功能鉴定
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
C1q/TNF-related protein 9调控平滑肌细胞程序性坏死抑制动脉粥样硬化的机制研究
  • 批准号:
    81900309
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Elucidation of homeostasis and molecular mechanisms mediated by protein histidine methylation
阐明蛋白质组氨酸甲基化介导的稳态和分子机制
  • 批准号:
    23H00321
  • 财政年份:
    2023
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Elucidating pathogenic mechanisms of heart failure through RNA metabolism and protein-protein interaction mediated by transcriptional modulator IkBz
通过转录调节剂 IkBz 介导的 RNA 代谢和蛋白质-蛋白质相互作用阐明心力衰竭的致病机制
  • 批准号:
    23K07501
  • 财政年份:
    2023
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Effects of HIV-1 Tat protein and methamphetamine on VMAT2-mediated dopamine transmission in the context of neuroHIV and drug abuse
HIV-1 Tat 蛋白和甲基苯丙胺对神经 HIV 和药物滥用背景下 VMAT2 介导的多巴胺传递的影响
  • 批准号:
    10698618
  • 财政年份:
    2023
  • 资助金额:
    $ 25.68万
  • 项目类别:
Nascent protein degradation-based fast homeostatic mechanism mediated by neuronal membrane proteasomes
神经元膜蛋白酶体介导的基于新生蛋白降解的快速稳态机制
  • 批准号:
    10717075
  • 财政年份:
    2023
  • 资助金额:
    $ 25.68万
  • 项目类别:
Elucidation of the protein kinase NLK-mediated aging mechanisms and treatment of age-related diseases
阐明蛋白激酶NLK介导的衰老机制及年龄相关疾病的治疗
  • 批准号:
    23K06378
  • 财政年份:
    2023
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Examination of the inhibitory effect on cell-to-cell transmission of aberrant TDP-43 protein and neurodegeneration by TREM2 stimulation-mediated microglial activation
通过 TREM2 刺激介导的小胶质细胞激活检查对异常 TDP-43 蛋白的细胞间传播和神经退行性疾病的抑制作用
  • 批准号:
    23K06970
  • 财政年份:
    2023
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Food-mediated innate immune memory: Novel functions of food components via protein modification
食物介导的先天免疫记忆:通过蛋白质修饰实现食物成分的新功能
  • 批准号:
    23H02157
  • 财政年份:
    2023
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The Analysis of the mechanisms of the aging-mediated accumulation of CADASIL-mutated NOTCH3 protein
CADASIL突变NOTCH3蛋白衰老介导的积累机制分析
  • 批准号:
    22KJ0484
  • 财政年份:
    2023
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Canagliflozin Inhibits Hedgehog Interacting Protein (Hhip)-Mediated Renal Tubular Cell Senescence in Type 1 Akita Mice
Canagliflozin 抑制 1 型秋田小鼠中刺猬相互作用蛋白 (Hhip) 介导的肾小管细胞衰老
  • 批准号:
    495301
  • 财政年份:
    2023
  • 资助金额:
    $ 25.68万
  • 项目类别:
Uncovering how plant pathogens take control of chloroplast protein import to limit chloroplast-mediated immunity
揭示植物病原体如何控制叶绿体蛋白输入以限制叶绿体介导的免疫
  • 批准号:
    BB/X000192/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了