Scalar Curvature, Geometric Flow, and the General Penrose Conjecture
标量曲率、几何流和一般彭罗斯猜想
基本信息
- 批准号:0533551
- 负责人:
- 金额:$ 24.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-04-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Scalar Curvature, Geometric Flows, and the General Penrose Conjecture DMS - 0206483 Hubert Bray, MIT The primary goal of this research is to prove the full Penrose conjecture in general relativity about the mass of black holes in a spacetime. In 3+1 dimensions, this conjecture states that the total mass of a spacetime with nonnegative energy density everywhere is greater than or equal to the square root of the total area of the event horizons of all of the black holes in the spacetime divided by 16 pi. This conjecture can be thought of as stating that the mass contributed by a collection of black holes is at least the square root of their surface areas divided 16 pi, so that nonnegative energy density everywhere else in the universe forces the total mass of the spacetime to be at least this amount. The Penrose conjecture is best thought of as a conjecture on arbitrary three dimensional space-like slices of the spacetime. In the special case that the space-like slice is assumed to have zero second fundamental form, the conjecture is known as the Riemannian Penrose conjecture. This conjecture was first proved for a single black hole by Huisken and Ilmanen in 1997 and then for any number of black holes by the author in 1999. The author would also like to prove the Riemannian Penrose Conjecture in dimensions higher than three and is close to announcing this result for dimensions less than eight. Dimensions eight and higher present additional geometric and analytical challenges arising from the fact that the apparent horizons of black holes manifest themselves as minimal hypersurfaces which can have co-dimension seven singularities. The positive mass theorem is also still open in these dimensions for similar reasons, and is another very interesting related problem.The motivation for the above problems is to gain a better understanding of General Relativity. While Einstein's theory ofGeneral Relativity is experimentally the best known theory of gravity, their are many theoretical questions about the theory which are not well understood at all. For example, given theuniverse at some initial time, do the Einstein equations have unique well-behaved solutions in the future as one would hope, ordo singularities typically occur which might radiate or consumeenergy for example? The theory also predicts the existence ofblack holes, and astronomers believe that they have been able to detect the location of many black holes including one which is 3 million times the mass of the sun at the center of our galaxy. Since doing experiments with black holes is currently not feasible, it makes since to understand this potentially very important phenomenon on a theoretical level for now. This research project hopes to lead to a better understanding of blackholes as well as energy and mass in General Relativity.
标量曲率、几何流和广义彭罗斯猜想 DMS - 0206483 Hubert Bray,MIT 这项研究的主要目标是证明广义相对论中关于时空中黑洞质量的完整彭罗斯猜想。 在3+1维中,这个猜想指出,一个处处具有非负能量密度的时空的总质量大于或等于该时空中所有黑洞视界总面积的平方根除以16 π。 这个猜想可以被认为是这样的:一个黑洞集合所贡献的质量至少是它们的表面积除以16 π的平方根,所以宇宙中其他地方的非负能量密度迫使时空的总质量至少是这个量。 彭罗斯猜想最好被认为是关于时空的任意三维类空切片的猜想。 在特殊情况下,假设类空切片具有零第二基本形式,该猜想被称为黎曼彭罗斯猜想。 这个猜想首先由Huisken和Ilmanen在1997年证明了单个黑洞,然后由作者在1999年证明了任何数量的黑洞。 作者还想证明黎曼彭罗斯猜想的维度高于3,并接近宣布这一结果的维度小于8。 八维及更高维的黑洞提出了额外的几何和分析挑战,因为黑洞的视视界表现为最小的超曲面,它们可以具有余维七的奇点。 正质量定理在这些维度上也是同样的原因,也是另一个非常有趣的相关问题。上述问题的动机是为了更好地理解广义相对论。 虽然爱因斯坦的广义相对论在实验上是最著名的引力理论,但关于这个理论的许多理论问题还没有得到很好的理解。 例如,给定宇宙在某个初始时刻,爱因斯坦方程是否如人们所希望的那样在未来有唯一的良好行为的解,或者是否通常会出现可能辐射或消耗能量的奇点? 该理论还预言了黑洞的存在,天文学家相信他们已经能够探测到许多黑洞的位置,包括银河系中心一个质量是太阳300万倍的黑洞。 由于目前对黑洞进行实验是不可行的,因此目前在理论层面上理解这一潜在的非常重要的现象。 这个研究项目希望能够更好地理解黑洞以及广义相对论中的能量和质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hubert Bray其他文献
On the capacity of surfaces in manifolds with nonnegative scalar curvature THANKSREF="*" ID="*"The research of the first author was partially supported by NSF grant DMS-0533551. The research of the second author was partially supported by an Early Career Researcher Grant of Monash University.
- DOI:
10.1007/s00222-007-0102-x - 发表时间:
2008-01-09 - 期刊:
- 影响因子:3.600
- 作者:
Hubert Bray;Pengzi Miao - 通讯作者:
Pengzi Miao
Hubert Bray的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hubert Bray', 18)}}的其他基金
Time Flat Curves and Surfaces, Geometric Flows, and the Penrose Conjecture
时间平坦曲线和曲面、几何流和彭罗斯猜想
- 批准号:
1406396 - 财政年份:2014
- 资助金额:
$ 24.24万 - 项目类别:
Standard Grant
Scalar Curvature, the Penrose Conjecture, and the Axioms of General Relativity
标量曲率、彭罗斯猜想和广义相对论公理
- 批准号:
1007063 - 财政年份:2010
- 资助金额:
$ 24.24万 - 项目类别:
Continuing Grant
Geometric Analysis Applied to General Relativity
几何分析应用于广义相对论
- 批准号:
0706794 - 财政年份:2007
- 资助金额:
$ 24.24万 - 项目类别:
Continuing Grant
Scalar Curvature, Geometric Flow, and the General Penrose Conjecture
标量曲率、几何流和一般彭罗斯猜想
- 批准号:
0206483 - 财政年份:2002
- 资助金额:
$ 24.24万 - 项目类别:
Continuing Grant
A Continuing Investigation of the Penrose Conjecture in General Relativity
广义相对论彭罗斯猜想的继续研究
- 批准号:
9971960 - 财政年份:2000
- 资助金额:
$ 24.24万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9706006 - 财政年份:1997
- 资助金额:
$ 24.24万 - 项目类别:
Fellowship Award
相似海外基金
Scalar curvature and geometric variational problems
标量曲率和几何变分问题
- 批准号:
2303624 - 财政年份:2023
- 资助金额:
$ 24.24万 - 项目类别:
Standard Grant
Constant scalar curvature Kahler metrics of Poincare type and algebro-geometric stability
庞加莱型恒定标量曲率卡勒度量和代数几何稳定性
- 批准号:
23K19020 - 财政年份:2023
- 资助金额:
$ 24.24万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Geometric Variational Problems and Scalar Curvature
几何变分问题和标量曲率
- 批准号:
2202343 - 财政年份:2021
- 资助金额:
$ 24.24万 - 项目类别:
Standard Grant
Geometric Variational Problems and Scalar Curvature
几何变分问题和标量曲率
- 批准号:
2005287 - 财政年份:2020
- 资助金额:
$ 24.24万 - 项目类别:
Standard Grant
Geometric Problems Involving Scalar Curvature
涉及标量曲率的几何问题
- 批准号:
1906423 - 财政年份:2019
- 资助金额:
$ 24.24万 - 项目类别:
Standard Grant
Scalar curvature, spectral zeta functions and local geometric invariants for noncommutative spaces
非交换空间的标量曲率、谱 zeta 函数和局部几何不变量
- 批准号:
RGPIN-2014-04087 - 财政年份:2018
- 资助金额:
$ 24.24万 - 项目类别:
Discovery Grants Program - Individual
Scalar curvature, spectral zeta functions and local geometric invariants for noncommutative spaces
非交换空间的标量曲率、谱 zeta 函数和局部几何不变量
- 批准号:
RGPIN-2014-04087 - 财政年份:2017
- 资助金额:
$ 24.24万 - 项目类别:
Discovery Grants Program - Individual
Scalar curvature, spectral zeta functions and local geometric invariants for noncommutative spaces
非交换空间的标量曲率、谱 zeta 函数和局部几何不变量
- 批准号:
RGPIN-2014-04087 - 财政年份:2016
- 资助金额:
$ 24.24万 - 项目类别:
Discovery Grants Program - Individual
Scalar curvature, spectral zeta functions and local geometric invariants for noncommutative spaces
非交换空间的标量曲率、谱 zeta 函数和局部几何不变量
- 批准号:
RGPIN-2014-04087 - 财政年份:2015
- 资助金额:
$ 24.24万 - 项目类别:
Discovery Grants Program - Individual
Scalar curvature, spectral zeta functions and local geometric invariants for noncommutative spaces
非交换空间的标量曲率、谱 zeta 函数和局部几何不变量
- 批准号:
RGPIN-2014-04087 - 财政年份:2014
- 资助金额:
$ 24.24万 - 项目类别:
Discovery Grants Program - Individual