Geometric Analysis Applied to General Relativity
几何分析应用于广义相对论
基本信息
- 批准号:0706794
- 负责人:
- 金额:$ 20.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Professor Bray studies geometric analysis problems that relate to scalar curvature, many of which are motivated by fundamental questions in General Relativity. Recently, Marcus Khuri and the PI have made important progress on the Penrose Conjecture for asymptotically-flat space-like slices of spacetimes by reducing the conjecture to interesting existence questions for certain naturally motivated systems of p.d.e.'s. One of these existence questions is similar to the one solved by Huisken-Ilmanen to prove the existence of the inverse mean curvature flow with jumps, but for a system of two equations instead of one equation. The physical interpretation of the Penrose Conjecture is the natural idea that the total mass of a spacetime with nonnegative energy density should be at least the mass contributed by the black holes in the spacetime. In 1973, Roger Penrose was able to turn the above statement into a precise geometric conjecture about the Cauchy data of an asymptotically flat space-like slice (itself a Riemannian 3-manifold) of a spacetime. The time-symmetric case, known as the Riemannian Penrose Conjecture, was proved by the PI in 1999, and by Huisken-Ilmanen in 1997 for a single black hole. In this case, the energy density of the spacetime equals the scalar curvature of the slice, the total mass is a parameter describing the rate at which the Riemannian manifold is becoming flat at infinity, and apparent horizons of black holes are area-outerminimizing minimal surfaces. The Riemannian Penrose Inequality is the statement that the total mass is greater than or equal to the square root of the surface area of the apparent horizons of the black holes divided by 16 pi. When we drop the assumption that the Riemannian manifold is time-symmetric in the spacetime and allow the second fundamental form of the slice to be anything, a generalization of this statement is known simply as the Penrose Conjecture. The PI also studies negative point mass singularities in General Relativity and questions relating to quasi-local mass.As acclaimed a theory as General Relativity is, fundamental aspects of the theory are still not understood. For example, given the state of the universe at one instant of (coordinate) time, it is not currently known if the relevant equations, including the Einstein equation, can be solved forward in time other than for a very short period. Yet the universe, as we observe daily, exists without interruption. Hence, understanding the existence theory of the Cauchy Problem in General Relativity, as this problem is called, is a major question. If General Relativity does not has a physical existence theory, this will be a major hint as to how the theory needs to be modified. If General Relativity does have an existence theory corresponding to the physical universe, then this will be one more piece of evidence supporting the theory. One thing that is clear is that black holes and singularities play an important role in this question. In any case, understanding fundamental theoretical questions about General Relativity will not only deepen our understanding of the theory, but also help current and future researchers develop the next generation of physical theories.
布雷教授研究与标量曲率有关的几何分析问题,其中许多问题是由广义相对论中的基本问题引起的。最近,Marcus Khuri和PI通过将彭罗斯猜想简化为某些自然驱动的p.d.e系统的有趣的存在性问题,在关于时空渐近平坦类空片的彭罗斯猜想上取得了重要进展。其中一个存在性问题类似于Huisken-Ilmanen为证明带跳跃的逆平均曲率流的存在性而解决的问题,但这是一个由两个方程而不是一个方程组成的系统。彭罗斯猜想的物理解释是一个自然的想法,即具有非负能量密度的时空的总质量至少应该是时空中黑洞所贡献的质量。1973年,罗杰·彭罗斯(Roger Penrose)能够将上述陈述转化为关于时空的渐近平坦类空片(本身是黎曼3流形)的柯西数据的精确几何猜想。时间对称的情况,被称为黎曼彭罗斯猜想,在1999年由PI证明,在1997年由Huisken-Ilmanen证明了一个黑洞。在这种情况下,时空的能量密度等于薄片的标量曲率,总质量是描述黎曼流形在无穷远处变平的速率的参数,黑洞的视视界是面积极限的最小表面。黎曼彭罗斯不等式是关于总质量大于等于黑洞视界表面积的平方根除以16的表述。当我们放弃黎曼流形在时空中是时间对称的假设,并允许片的第二种基本形式是任何东西时,这一陈述的推广被简单地称为彭罗斯猜想。PI还研究广义相对论中的负质量点奇点以及与准局部质量有关的问题。广义相对论作为一种广受赞誉的理论,其基本方面仍未被理解。例如,给定宇宙在某一时刻(坐标)的状态,目前还不知道相关方程,包括爱因斯坦方程,是否可以在时间上向前求解,而不是在很短的时间内。然而,正如我们每天所观察到的那样,宇宙是不间断地存在的。因此,理解广义相对论中柯西问题的存在论是一个重大问题。如果广义相对论没有一个物理存在理论,这将是一个重要的提示,说明该理论需要如何修改。如果广义相对论确实有一个与物理宇宙相对应的存在理论,那么这将是支持该理论的又一个证据。有一件事是明确的,黑洞和奇点在这个问题中扮演着重要的角色。无论如何,理解广义相对论的基本理论问题不仅会加深我们对这一理论的理解,还会帮助当前和未来的研究人员发展下一代物理理论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hubert Bray其他文献
On the capacity of surfaces in manifolds with nonnegative scalar curvature THANKSREF="*" ID="*"The research of the first author was partially supported by NSF grant DMS-0533551. The research of the second author was partially supported by an Early Career Researcher Grant of Monash University.
- DOI:
10.1007/s00222-007-0102-x - 发表时间:
2008-01-09 - 期刊:
- 影响因子:3.600
- 作者:
Hubert Bray;Pengzi Miao - 通讯作者:
Pengzi Miao
Hubert Bray的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hubert Bray', 18)}}的其他基金
Time Flat Curves and Surfaces, Geometric Flows, and the Penrose Conjecture
时间平坦曲线和曲面、几何流和彭罗斯猜想
- 批准号:
1406396 - 财政年份:2014
- 资助金额:
$ 20.3万 - 项目类别:
Standard Grant
Scalar Curvature, the Penrose Conjecture, and the Axioms of General Relativity
标量曲率、彭罗斯猜想和广义相对论公理
- 批准号:
1007063 - 财政年份:2010
- 资助金额:
$ 20.3万 - 项目类别:
Continuing Grant
Scalar Curvature, Geometric Flow, and the General Penrose Conjecture
标量曲率、几何流和一般彭罗斯猜想
- 批准号:
0533551 - 财政年份:2005
- 资助金额:
$ 20.3万 - 项目类别:
Continuing Grant
Scalar Curvature, Geometric Flow, and the General Penrose Conjecture
标量曲率、几何流和一般彭罗斯猜想
- 批准号:
0206483 - 财政年份:2002
- 资助金额:
$ 20.3万 - 项目类别:
Continuing Grant
A Continuing Investigation of the Penrose Conjecture in General Relativity
广义相对论彭罗斯猜想的继续研究
- 批准号:
9971960 - 财政年份:2000
- 资助金额:
$ 20.3万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9706006 - 财政年份:1997
- 资助金额:
$ 20.3万 - 项目类别:
Fellowship Award
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
REU Site: Undergraduate Research in Applied Analysis at West Virginia University
REU 网站:西弗吉尼亚大学应用分析本科生研究
- 批准号:
2349040 - 财政年份:2024
- 资助金额:
$ 20.3万 - 项目类别:
Standard Grant
Collaborative Research: New perspectives from applied and computational time-frequency analysis
合作研究:应用和计算时频分析的新视角
- 批准号:
2309652 - 财政年份:2023
- 资助金额:
$ 20.3万 - 项目类别:
Standard Grant
Collaborative Research: New perspectives from applied and computational time-frequency analysis
合作研究:应用和计算时频分析的新视角
- 批准号:
2309651 - 财政年份:2023
- 资助金额:
$ 20.3万 - 项目类别:
Standard Grant
To investigate Natural Language Processing combined with AI enabled image analysis tools applied to PETCT reporting to enhance specificity in follow-u
研究自然语言处理与人工智能图像分析工具相结合应用于 PETCT 报告,以增强后续报告的特异性
- 批准号:
2698750 - 财政年份:2022
- 资助金额:
$ 20.3万 - 项目类别:
Studentship
Acuity - A Clinical Decision Support System for Applied Behavior Analysis
Acuity - 应用行为分析的临床决策支持系统
- 批准号:
10552494 - 财政年份:2022
- 资助金额:
$ 20.3万 - 项目类别:
Applied behavior analysis of the mechanism of problematic SNS use during childhood and adolescence
儿童和青少年时期有问题的SNS使用机制的应用行为分析
- 批准号:
22K03059 - 财政年份:2022
- 资助金额:
$ 20.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Comprehensive research on "Shoen-ezu" survey and analysis methods and applied research on general-purpose historical geographic information
“正圆江津”调查分析方法综合研究及通用历史地理信息应用研究
- 批准号:
22H00016 - 财政年份:2022
- 资助金额:
$ 20.3万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Super-resolution imaging, single cell analysis, and modelling approaches applied to the study of immune cell signaling and behaviour
超分辨率成像、单细胞分析和建模方法应用于免疫细胞信号传导和行为的研究
- 批准号:
RGPIN-2020-04820 - 财政年份:2022
- 资助金额:
$ 20.3万 - 项目类别:
Discovery Grants Program - Individual
Support for the International Institute for Applied Systems Analysis (IIASA)
支持国际应用系统分析研究所 (IIASA)
- 批准号:
2208213 - 财政年份:2022
- 资助金额:
$ 20.3万 - 项目类别:
Standard Grant