MotionSearch: Motion Trajectory-Based Object Activity Retrieval and Recognition from Video and Sensor Databases
MotionSearch:从视频和传感器数据库中基于运动轨迹的对象活动检索和识别
基本信息
- 批准号:0534438
- 负责人:
- 金额:$ 41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-15 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Motion is an important component in temporal datasets representing a variety of sensor devices. This project investigates the design of scalable motion-content-based indexing/retrieval mechanisms and an activity recognition system for applications that employ large motion data archives. A unified mathematical framework is developed for representing motion features that allows integration of indexing/retrieval formulation as well as semantic-based intelligent recognition systems. Motion trajectories are segmented into sub-trajectories using computationally efficient techniques that exploit curvature information and cope with occlusions and missing data. Representation of sub-trajectories is based on principle component analysis (PCA) of the motion data which allows compact low-dimensional representation as well as real-time query processing. Extension of this representation to multiple motion trajectory data is based on three-dimensional tensor singular value decomposition (SVD). Innovative use of these analytically-motivated feature spaces is relied upon for developing robust indexing and retrieval systems and scalable activity recognition systems based on Hidden Markov Models. The techniques developed are prototyped and the performance of the system is evaluated using several video archives. The project is a giant step forward towards unifying query-by-example-based indexing and retrieval systems and high-level semantic query-based activity recognition systems. This project will significantly enhance the current state of the art in content-based indexing and retrieval and activity recognition systems for applications that employ temporal datasets. It will facilitate the development of diverse motion-based applications for entertainment and security applications. The project web site (http://multimedia.ece.uic.edu/motionsearch) provides access to resulting research papers and implementation code.
运动是代表各种传感器设备的时间数据集中的重要组成部分。 本项目研究设计的可扩展的运动内容为基础的索引/检索机制和活动识别系统的应用程序,采用大型运动数据档案。 一个统一的数学框架的发展,表示运动功能,允许集成的索引/检索制定以及基于语义的智能识别系统。 运动轨迹分割成子轨迹使用计算效率高的技术,利用曲率信息和科普闭塞和丢失的数据。 子轨迹的表示是基于主成分分析(PCA)的运动数据,它允许紧凑的低维表示以及实时查询处理。 这种表示扩展到多个运动轨迹数据是基于三维张量奇异值分解(SVD)。 这些分析动机的特征空间的创新使用依赖于开发强大的索引和检索系统和可扩展的活动识别系统的基础上隐马尔可夫模型。 开发的技术原型和系统的性能进行评估,使用几个视频档案。 该项目是一个巨大的进步,统一查询的例子为基础的索引和检索系统和高层次的语义查询为基础的活动识别系统。 该项目将显著提高基于内容的索引和检索以及活动识别系统的当前技术水平,以应用于使用时态数据集的应用。 它将促进娱乐和安全应用程序的各种基于运动的应用程序的开发。 该项目的网站(http://multimedia.ece.uic.edu/motionsearch)可供查阅所产生的研究论文和执行代码。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ashfaq Khokhar其他文献
2020 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2020, Austin, TX, USA, March 23-27, 2020
2020 IEEE 国际普适计算和通信研讨会研讨会,PerCom Workshops 2020,美国德克萨斯州奥斯汀,2020 年 3 月 23-27 日
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Yuan Lai;Gonzalo J. Martinez;Stephen M. Mattingly;Shayan Mirjafari;Subigya Nepal;Andrew T Campbell;A. Dey;Aaron D. Striegel;Marco Jansen;Fatjon Seraj;Wei Wang;P. Havinga;Kaijie Zhang;Zhiwen Yu;Dong Zhang;Zhu Wang;Bin Guo;Julian Graf;Katrin Neubauer;Sebastian Fischer;Rudolf Hackenberg;Elliott Wen;Gerald Weber;Javier Rojo;Daniel Flores;J. García;J. M. Murillo;Javier Berrocal;Mingyu Hou;Tianyu Kang;Li Guo;Edison Thomaz;Beichen Yang;Min Sun;Xiaoyan Hong;Xiaoming Guo;P. Barsocchi;A. Crivello;Michele Girolami;Fabio Mavilia;Vivek Chandel;Shivam Singhal;Avik Ghose;Tetsushi Matsuda;Toru Inada;Susumu Ishihara;Luay Alawneh;Belal Mohsen;Mohammad Al;Ahmed S. Shatnawi;Mahmoud Al;N. B. Rabah;Eoin Brophy;W. Muehlhausen;A. Smeaton;Tomás E. Ward;S. Maskey;S. Badsha;Shamik Sengupta;Ibrahim Khalil;Stanisław Saganowski;Anna Dutkowiak;A. Dziadek;Maciej Dziezyc;Joanna Komoszynska;Weronika Michalska;Adam G. Polak;Michal Ujma;Przemysław Kazienko;Nurullah Karakoç;Anna Scaglione;Fatemeh Mirzaei;Jonathan Lam;Roberto Manduchi;R. K. Ramakrishnan;R. Gavas;Lalit Venkata Subramaninan Viraraghavan;Kumar Hissaria;Arpan Pal;P. Balamuralidhar;S. Ditton;Ali Tekeoglu;K. Bekiroglu;Seshadhri Srinivasan;E. Tonkin;Miquel Perello Nieto;Haixia Bi;Antonis Vafeas;Yuri Tani;M. Garcia;A. Konios;M. A. Mustafa;C. Nugent;G. Morrison;Noah Sieck;Cameron Calpin;Mohammad S. Almalag;M. M. Sandhu;Kai Geissdoerfer;Sara Khalifa;Raja Jurdak;Marius Portmann;Brano Kusy;Alwyn Burger;Chao Qian;Gregor Schiele;Domenik Helms;Peter Zdankin;Marian Waltereit;V. Matkovic;Torben Weis;Syafiq Al Atiiq;Christian Gehrmann;Jae Woong Lee;Sumi Helal;Mathias Mormul;Christoph Stach;L. Krupp;G. Bahle;Agnes Gruenerbl;P. Lukowicz;Nicholas Handaja;Brent Lagesse;Clémentine Gritti;Dennis Przytarski;Bernhard Mitschang;Yeongjun Jeon;Kukho Heo;Soon Ju Kang;Sandeep Biplav Srivastava;Singh Sandha;Vaskar Raychoudhury;Sukanya Randhawa;V. Kapoor;Anmol Agrawal;Young D. Kwon;Kirill A. Shatilov;Lik;Serkan Kumyol;Kit;Yui;Pan Hui;Brittany Lewis;Joshua Hebert;Krishna Venkatasubramanian;Matthew Provost;Kelly Charlebois;Kristina Yordanova;Albert Hein;T. Kirste;Lien;Jun;Wei;Casper Van Gheluwe;I. Šemanjski;Suzanne Hendrikse;S. Gautama;Furqan Jameel;Zheng Chang;Riku Jäntti;Sergio Laso;M. Linaje;Ikram Ullah;N. Meratnia;Steven M. Hernandez;Eyuphan Bulut;Amiah Gooding;Matthew Martin;Maxwell Minard;Smruthi Sandhanam;Travis Stanger;Yana Alexandrova;Ashfaq Khokhar;Goce Trajcevski;Utsav Goswami;Kevin Wang;Gabriel Nguyen;Federico Montori;L. Bedogni;Gianluca Iselli;L. Bononi;Saptaparni Kumar;Haochen Pan;Roger Wang;Lewis Tseng;K. Hirayama;S. Saiki;Masahide Nakamura;Kiyoshi Yasuda;Samy El;Ismail Arai;Ahmad Salman;B. B. Park;Yuya Sano;Yuito Sugata;Teruhiro Mizumoto;H. Suwa;K. Yasumoto;P. Kouris;Marietta Sionti;Chrysovalantis Korfitis;Stella Markantonatou;Naima Khan;Nirmalya Roy;D. Jaiswal;D. Chatterjee;Ramesh Kumar;Ana Cristina Franco;Da Silva;Pascal Hirmer;Jan Schneider;Seda Ulusal;Matheus Tavares;Tomokazu Matsui;Kosei Onishi;Shinya Misaki;Manato Fujimoto;Hayata Satake;Yuki Kobayashi;Ryotaro Tani;Hiroshi Shigeno;Avijoy Chakma;Abu Zaher;Md Faridee;M Sajjad Hossain;Cleo Forman;Pablo Thiel;Raymond Ptucha;Miguel Dominguez;Cecilia Ovesdotter Alm;S. Mozgai;Arno Hartholt;Albert Rizzo - 通讯作者:
Albert Rizzo
A high performance multiple sequence alignment system for pyrosequencing reads from multiple reference genomes
- DOI:
10.1016/j.jpdc.2011.08.001 - 发表时间:
2012-01-01 - 期刊:
- 影响因子:
- 作者:
Fahad Saeed;Alan Perez-Rathke;Jaroslaw Gwarnicki;Tanya Berger-Wolf;Ashfaq Khokhar - 通讯作者:
Ashfaq Khokhar
Ashfaq Khokhar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ashfaq Khokhar', 18)}}的其他基金
Signaling Design and Algorithms for Grant-Free Multiple Access
无授权多址的信令设计和算法
- 批准号:
1711922 - 财政年份:2017
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
IUSE/PFE:RED: Reinventing the Instructional and Departmental Enterprise (RIDE) to Advance the Professional Formation of Electrical and Computer Engineers
IUSE/PFE:RED:重塑教学和部门企业 (RIDE),以促进电气和计算机工程师的专业培养
- 批准号:
1623125 - 财政年份:2016
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
EAGER: High Performance Algorithms and Implementatations for Genome Alignment
EAGER:基因组比对的高性能算法和实现
- 批准号:
1441384 - 财政年份:2013
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
EAGER: High Performance Algorithms and Implementatations for Genome Alignment
EAGER:基因组比对的高性能算法和实现
- 批准号:
1250264 - 财政年份:2012
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
SGER: Trusted Privacy Preserving Data Mining over Grids
SGER:基于网格的可信隐私保护数据挖掘
- 批准号:
0550210 - 财政年份:2005
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
US-Pakistan 2nd International Workshop on Research and Development in Information Technology
美国-巴基斯坦第二届信息技术研究与开发国际研讨会
- 批准号:
0456070 - 财政年份:2004
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
US-Pakistan Workshop: Research and Development in Information Technology, Islamabad, Pakistan, April 2003
美国-巴基斯坦研讨会:信息技术研究与开发,巴基斯坦伊斯兰堡,2003 年 4 月
- 批准号:
0243764 - 财政年份:2003
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
CAREER: Multithreaded Algorithms, Models, and Runtime System Tools for Multimedia Applications
职业:多媒体应用程序的多线程算法、模型和运行时系统工具
- 批准号:
0196365 - 财政年份:2000
- 资助金额:
$ 41万 - 项目类别:
Continuing Grant
CAREER: Multithreaded Algorithms, Models, and Runtime System Tools for Multimedia Applications
职业:多媒体应用程序的多线程算法、模型和运行时系统工具
- 批准号:
9875662 - 财政年份:1999
- 资助金额:
$ 41万 - 项目类别:
Continuing Grant
相似海外基金
Trajectory error estimation for machining center cutter path due to motion error between interpolation segments
插补段之间运动误差引起的加工中心刀具轨迹轨迹误差估计
- 批准号:
21K03811 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Trajectory control of multi-degree-of-freedom systems with kinematic redundancy by motion optimization for high-speed and high-precision machining
通过运动优化实现运动冗余多自由度系统的轨迹控制,实现高速高精度加工
- 批准号:
20K14622 - 财政年份:2020
- 资助金额:
$ 41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Structural Motion Control and Optimal Trajectory Planning for High-Productivity Manufacturing
高生产率制造的结构运动控制和最佳轨迹规划
- 批准号:
RGPIN-2014-03879 - 财政年份:2018
- 资助金额:
$ 41万 - 项目类别:
Discovery Grants Program - Individual
Study on optimization of the center of gravity trajectory in motion to gravity direction: focusing on stand to sit motion
运动中重心轨迹向重力方向的优化研究——以站坐运动为重点
- 批准号:
18K10755 - 财政年份:2018
- 资助金额:
$ 41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural Motion Control and Optimal Trajectory Planning for High-Productivity Manufacturing
高生产率制造的结构运动控制和最佳轨迹规划
- 批准号:
RGPIN-2014-03879 - 财政年份:2017
- 资助金额:
$ 41万 - 项目类别:
Discovery Grants Program - Individual
Structural Motion Control and Optimal Trajectory Planning for High-Productivity Manufacturing
高生产率制造的结构运动控制和最佳轨迹规划
- 批准号:
RGPIN-2014-03879 - 财政年份:2016
- 资助金额:
$ 41万 - 项目类别:
Discovery Grants Program - Individual
Structural Motion Control and Optimal Trajectory Planning for High-Productivity Manufacturing
高生产率制造的结构运动控制和最佳轨迹规划
- 批准号:
RGPIN-2014-03879 - 财政年份:2015
- 资助金额:
$ 41万 - 项目类别:
Discovery Grants Program - Individual
NRI: Information-Theoretic Trajectory Optimization for Motion Planning and Control with Applications to Space Proximity Operations
NRI:运动规划和控制的信息理论轨迹优化及其在空间邻近操作中的应用
- 批准号:
1426945 - 财政年份:2014
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
Structural Motion Control and Optimal Trajectory Planning for High-Productivity Manufacturing
高生产率制造的结构运动控制和最佳轨迹规划
- 批准号:
RGPIN-2014-03879 - 财政年份:2014
- 资助金额:
$ 41万 - 项目类别:
Discovery Grants Program - Individual
Proficiency evaluation of hemiplegic gait using a repeatability of the trajectory of motion
使用运动轨迹的重复性评估偏瘫步态的熟练程度
- 批准号:
23500625 - 财政年份:2011
- 资助金额:
$ 41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)