EAGER: High Performance Algorithms and Implementatations for Genome Alignment
EAGER:基因组比对的高性能算法和实现
基本信息
- 批准号:1250264
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Analysis of biological sequences, including multiple sequence alignment, motif finding, and genome alignment, is a fundamental problem in computational biology due to its critical significance in wide ranging applications including haplotype reconstruction, sequence homology, phylogenetic analysis, and prediction of evolutionary origins. Most of the sequence analysis problem formulations (particularly those related to alignment) are considered NP-hard. Existing solutions to the sequence alignment problem (both sequential as well as parallel) are extremely limited in their applicability and yield poor performance for large data sets. Moreover most of these solutions have been designed for aligning short length sequences. The genome alignment problem (very long sequences) is significantly harder and very few solutions exist that are capable to construct genomes from short reads while taking significant amount of execution time. This project deals with the design and development of high performance algorithms and implementations for aligning genomes using innovative sampling and domain decomposition strategies. This approach has never been pursued for genome alignment in the past. The proposed algorithms are implemented on hybrid computing platforms consisting of multicore clusters and GPU units.This project brings together tools and applications from multiple disciplines such as bioinformatics, computational biology, statistics, and high performance computing. Therefore the findings will introduce new tools for biology and biomedical applications. It will facilitate rapid reconstruction of genomes and mapping of short reads to the corresponding haplotypes.
生物序列分析是计算生物学中的一个基本问题,包括多序列比对、模体发现和基因组比对等,在单倍型重建、序列同源性分析、系统发育分析和进化起源预测等方面具有重要意义。大多数序列分析问题的公式(特别是那些与比对相关的)被认为是NP难的。序列比对问题的现有解决方案(顺序和并行)在其适用性方面非常有限,并且对于大数据集的性能很差。此外,这些解决方案中的大多数已经被设计用于比对短长度序列。基因组比对问题(非常长的序列)明显更难,并且存在能够从短读段构建基因组同时花费大量执行时间的非常少的解决方案。这个项目涉及高性能算法的设计和开发,以及使用创新的采样和区域分解策略来对齐基因组的实现。这种方法在过去从未被用于基因组比对。该项目将生物信息学、计算生物学、统计学和高性能计算等多个学科的工具和应用程序结合在一起,在多核集群和GPU单元组成的混合计算平台上实现算法。因此,这些发现将为生物学和生物医学应用引入新的工具。它将促进基因组的快速重建和将短读段映射到相应的单倍型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ashfaq Khokhar其他文献
2020 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2020, Austin, TX, USA, March 23-27, 2020
2020 IEEE 国际普适计算和通信研讨会研讨会,PerCom Workshops 2020,美国德克萨斯州奥斯汀,2020 年 3 月 23-27 日
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Yuan Lai;Gonzalo J. Martinez;Stephen M. Mattingly;Shayan Mirjafari;Subigya Nepal;Andrew T Campbell;A. Dey;Aaron D. Striegel;Marco Jansen;Fatjon Seraj;Wei Wang;P. Havinga;Kaijie Zhang;Zhiwen Yu;Dong Zhang;Zhu Wang;Bin Guo;Julian Graf;Katrin Neubauer;Sebastian Fischer;Rudolf Hackenberg;Elliott Wen;Gerald Weber;Javier Rojo;Daniel Flores;J. García;J. M. Murillo;Javier Berrocal;Mingyu Hou;Tianyu Kang;Li Guo;Edison Thomaz;Beichen Yang;Min Sun;Xiaoyan Hong;Xiaoming Guo;P. Barsocchi;A. Crivello;Michele Girolami;Fabio Mavilia;Vivek Chandel;Shivam Singhal;Avik Ghose;Tetsushi Matsuda;Toru Inada;Susumu Ishihara;Luay Alawneh;Belal Mohsen;Mohammad Al;Ahmed S. Shatnawi;Mahmoud Al;N. B. Rabah;Eoin Brophy;W. Muehlhausen;A. Smeaton;Tomás E. Ward;S. Maskey;S. Badsha;Shamik Sengupta;Ibrahim Khalil;Stanisław Saganowski;Anna Dutkowiak;A. Dziadek;Maciej Dziezyc;Joanna Komoszynska;Weronika Michalska;Adam G. Polak;Michal Ujma;Przemysław Kazienko;Nurullah Karakoç;Anna Scaglione;Fatemeh Mirzaei;Jonathan Lam;Roberto Manduchi;R. K. Ramakrishnan;R. Gavas;Lalit Venkata Subramaninan Viraraghavan;Kumar Hissaria;Arpan Pal;P. Balamuralidhar;S. Ditton;Ali Tekeoglu;K. Bekiroglu;Seshadhri Srinivasan;E. Tonkin;Miquel Perello Nieto;Haixia Bi;Antonis Vafeas;Yuri Tani;M. Garcia;A. Konios;M. A. Mustafa;C. Nugent;G. Morrison;Noah Sieck;Cameron Calpin;Mohammad S. Almalag;M. M. Sandhu;Kai Geissdoerfer;Sara Khalifa;Raja Jurdak;Marius Portmann;Brano Kusy;Alwyn Burger;Chao Qian;Gregor Schiele;Domenik Helms;Peter Zdankin;Marian Waltereit;V. Matkovic;Torben Weis;Syafiq Al Atiiq;Christian Gehrmann;Jae Woong Lee;Sumi Helal;Mathias Mormul;Christoph Stach;L. Krupp;G. Bahle;Agnes Gruenerbl;P. Lukowicz;Nicholas Handaja;Brent Lagesse;Clémentine Gritti;Dennis Przytarski;Bernhard Mitschang;Yeongjun Jeon;Kukho Heo;Soon Ju Kang;Sandeep Biplav Srivastava;Singh Sandha;Vaskar Raychoudhury;Sukanya Randhawa;V. Kapoor;Anmol Agrawal;Young D. Kwon;Kirill A. Shatilov;Lik;Serkan Kumyol;Kit;Yui;Pan Hui;Brittany Lewis;Joshua Hebert;Krishna Venkatasubramanian;Matthew Provost;Kelly Charlebois;Kristina Yordanova;Albert Hein;T. Kirste;Lien;Jun;Wei;Casper Van Gheluwe;I. Šemanjski;Suzanne Hendrikse;S. Gautama;Furqan Jameel;Zheng Chang;Riku Jäntti;Sergio Laso;M. Linaje;Ikram Ullah;N. Meratnia;Steven M. Hernandez;Eyuphan Bulut;Amiah Gooding;Matthew Martin;Maxwell Minard;Smruthi Sandhanam;Travis Stanger;Yana Alexandrova;Ashfaq Khokhar;Goce Trajcevski;Utsav Goswami;Kevin Wang;Gabriel Nguyen;Federico Montori;L. Bedogni;Gianluca Iselli;L. Bononi;Saptaparni Kumar;Haochen Pan;Roger Wang;Lewis Tseng;K. Hirayama;S. Saiki;Masahide Nakamura;Kiyoshi Yasuda;Samy El;Ismail Arai;Ahmad Salman;B. B. Park;Yuya Sano;Yuito Sugata;Teruhiro Mizumoto;H. Suwa;K. Yasumoto;P. Kouris;Marietta Sionti;Chrysovalantis Korfitis;Stella Markantonatou;Naima Khan;Nirmalya Roy;D. Jaiswal;D. Chatterjee;Ramesh Kumar;Ana Cristina Franco;Da Silva;Pascal Hirmer;Jan Schneider;Seda Ulusal;Matheus Tavares;Tomokazu Matsui;Kosei Onishi;Shinya Misaki;Manato Fujimoto;Hayata Satake;Yuki Kobayashi;Ryotaro Tani;Hiroshi Shigeno;Avijoy Chakma;Abu Zaher;Md Faridee;M Sajjad Hossain;Cleo Forman;Pablo Thiel;Raymond Ptucha;Miguel Dominguez;Cecilia Ovesdotter Alm;S. Mozgai;Arno Hartholt;Albert Rizzo - 通讯作者:
Albert Rizzo
A high performance multiple sequence alignment system for pyrosequencing reads from multiple reference genomes
- DOI:
10.1016/j.jpdc.2011.08.001 - 发表时间:
2012-01-01 - 期刊:
- 影响因子:
- 作者:
Fahad Saeed;Alan Perez-Rathke;Jaroslaw Gwarnicki;Tanya Berger-Wolf;Ashfaq Khokhar - 通讯作者:
Ashfaq Khokhar
Ashfaq Khokhar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ashfaq Khokhar', 18)}}的其他基金
Signaling Design and Algorithms for Grant-Free Multiple Access
无授权多址的信令设计和算法
- 批准号:
1711922 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
IUSE/PFE:RED: Reinventing the Instructional and Departmental Enterprise (RIDE) to Advance the Professional Formation of Electrical and Computer Engineers
IUSE/PFE:RED:重塑教学和部门企业 (RIDE),以促进电气和计算机工程师的专业培养
- 批准号:
1623125 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: High Performance Algorithms and Implementatations for Genome Alignment
EAGER:基因组比对的高性能算法和实现
- 批准号:
1441384 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
MotionSearch: Motion Trajectory-Based Object Activity Retrieval and Recognition from Video and Sensor Databases
MotionSearch:从视频和传感器数据库中基于运动轨迹的对象活动检索和识别
- 批准号:
0534438 - 财政年份:2006
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
SGER: Trusted Privacy Preserving Data Mining over Grids
SGER:基于网格的可信隐私保护数据挖掘
- 批准号:
0550210 - 财政年份:2005
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
US-Pakistan 2nd International Workshop on Research and Development in Information Technology
美国-巴基斯坦第二届信息技术研究与开发国际研讨会
- 批准号:
0456070 - 财政年份:2004
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
US-Pakistan Workshop: Research and Development in Information Technology, Islamabad, Pakistan, April 2003
美国-巴基斯坦研讨会:信息技术研究与开发,巴基斯坦伊斯兰堡,2003 年 4 月
- 批准号:
0243764 - 财政年份:2003
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Multithreaded Algorithms, Models, and Runtime System Tools for Multimedia Applications
职业:多媒体应用程序的多线程算法、模型和运行时系统工具
- 批准号:
0196365 - 财政年份:2000
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CAREER: Multithreaded Algorithms, Models, and Runtime System Tools for Multimedia Applications
职业:多媒体应用程序的多线程算法、模型和运行时系统工具
- 批准号:
9875662 - 财政年份:1999
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似海外基金
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
OAC Core: High Performance Computing Algorithms and Software for large-scale Mass Spectrometry based Omics
OAC Core:基于大规模质谱组学的高性能计算算法和软件
- 批准号:
2312599 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
AF: Small: RUI: Toward High-Performance Block Krylov Subspace Algorithms for Solving Large-Scale Linear Systems
AF:小:RUI:用于求解大规模线性系统的高性能块 Krylov 子空间算法
- 批准号:
2327619 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Co-optimizing Spectral Algorithms and Systems for High-Performance Graph Learning
合作研究:SHF:中:协同优化高性能图学习的谱算法和系统
- 批准号:
2212370 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
High Performance Graph Algorithms and Data Structures
高性能图算法和数据结构
- 批准号:
RGPIN-2022-03207 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Performance-Based Earthquake Engineering 2.0: Machine-Learning and Artificial Intelligence Algorithms for seismic hazard and vulnerability.
基于性能的地震工程 2.0:地震灾害和脆弱性的机器学习和人工智能算法。
- 批准号:
2765246 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Studentship
Design and Analysis of Algorithms for High-Performance Scientific Computing
高性能科学计算算法的设计与分析
- 批准号:
RGPIN-2019-05692 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Enabling Progressive Data Analytics for High Performance Computing: Algorithms and System Support
职业:实现高性能计算的渐进式数据分析:算法和系统支持
- 批准号:
2144403 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Co-optimizing Spectral Algorithms and Systems for High-Performance Graph Learning
合作研究:SHF:中:协同优化高性能图学习的谱算法和系统
- 批准号:
2212371 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant