Interpreting Human Behaviour in Video using FSA's and Object Context
使用 FSA 和对象上下文解释视频中的人类行为
基本信息
- 批准号:0534837
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-03-01 至 2010-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: David ForsythTitle: Interpreting Human Behavior in Video using FSA's and Object ContextUnderstanding what people are doing in a video is one of the great unsolved problems of computer vision. A fair solution opens tremendous application possibilities. The proposed work will use existing tools from the speech and object recognition community --- in particular, finite state automata or FSA's --- to obtain an understanding of activities that depend on detailed information about the body.The particular focus is everyday activity. In this case, a fixed vocabulary either doesn't exist, or isn't appropriate. For example, one does not know words for behaviors that appear familiar. One way to deal with this is to work with a notation (for example, laban notation); but such notations typically work in terms that are difficult to map to visual observables (for example, the weight of a motion). The alternatives are either to develop a vocabulary, or to develop expressive tools for authoring models.This project will explore the third approach of building tools for authoring models of behavior quickly and expressively using finite-state methods. Research will explore a class of models that are easy to author from existing, or easily available, data. The interpretation of what someone is doing is affected by the objectsnearby --- a person standing near a bus stop is doing something different from a person standing near an office door. The models studied make it practical to investigate this phenomenon of object context, using recent advances from the object recognition literature.Evaluating models for everyday behaviors is hard, because there is no prospect of obtaining a large collection of marked up video (among other things, there isn't a vocabulary in which to mark it up). This project will use proxies --- statistics that are hard to measure from video without accurate inferences of behavior, but easy to measure in other ways --- to evaluate behavior representations. These will make it possible to tell whether, for example, a model of buying a beverage represents the concept accurately.Intellectual merits: This project will produce very large finite state models of behavior using the same hierarchical authoring methods used in speech. There will be a particular emphasis on behaviors which require one to understand the kinematic configuration of the body, a topic that has been very difficult to study to date, with an intention of identifying basic building blocks of a vocabulary of everyday behavior. The results should include datasets of public behavior that can be disseminated, without encountering privacy concerns. New insights into the structure of human motion and behavior should emerge from (a) observations of people in public; (b) the process of authoring models; and (c) methods for identifying and modelling compositional structure in motion.Broader impact: This project should make substantial progress on one of the key open and applicable problems in computer vision. Methods that can search video for particular behaviors and compute statistics of behaviors have a wide range of applications, including human-computer interfaces built around computers that can watch the body; an improved understanding of what people do in public which will result in better architectural planning; more efficient management of surveillance data, allowing searches for dangerous behaviors while preserving privacy. Education and access: This project will contribute to the graduate training of several students, and work described will contribute to a planned text on computing with human motion.URL: http://luthuli.cs.uiuc.edu/~daf/action.html
PI:David Forsythtitle:使用FSA和对象上下文解释视频中人们在视频中所做的事情是计算机视觉的最大尚未解决的问题之一。 一个公平的解决方案开启了巨大的应用程序可能性。 拟议的工作将使用语音和对象识别社区中的现有工具 - 尤其是有限状态自动机或FSA - 以了解依赖有关身体详细信息的活动的理解。特别的重点是日常活动。 在这种情况下,固定的词汇要么不存在,要么不合适。 例如,人们不知道看起来熟悉的行为的单词。处理此问题的一种方法是使用符号(例如,Laban符号);但是,这些符号通常用难以映射到视觉可观察物的术语(例如,运动的重量)。替代方案要么是开发词汇量,要么开发用于创作模型的表达工具。该项目将探讨使用有限态方法快速而表达的行为模型来构建工具的第三种方法。研究将探索一类模型,这些模型易于从现有或易于获得的数据中撰写。 对某人正在做的事情的解释受到对象的影响 - 一个站在公共汽车站附近的人正在做一些与站在办公室门附近的人不同的事情。 研究的模型使研究对象环境的这种现象是实用的,使用对象识别文献中的最新进展。对日常行为的评估模型很难,因为没有一个可以获得大量标记的视频集合的前景(除其他事项外,没有一个可以标记它的词汇)。 该项目将使用代理---统计数据,这些统计信息很难从视频中测量而无需准确推断行为,但易于以其他方式衡量 - 以评估行为表示。 这些将使例如购买饮料的模型是否准确地代表概念。 将特别强调行为,这些行为需要一个人了解身体的运动学配置,这一主题很难研究,目的是确定日常行为词汇的基本构件。 结果应包括可以传播的公共行为数据集,而不会遇到隐私问题。对人类行动和行为结构的新见解应从(a)公开的人们观察中出现; (b)创作模型的过程; (c)识别运动中识别和建模组成结构的方法。BOADER的影响:该项目应在计算机视觉中的关键开放和适用问题之一上取得重大进展。 可以搜索视频的特定行为和行为统计的方法具有广泛的应用,包括围绕可以观察身体的计算机建立的人类计算机接口;对人们在公共场所所做的事情有了深入的了解,这将导致更好的建筑计划;更有效地管理监视数据,可以在保留隐私的同时搜索危险行为。 教育与访问:该项目将有助于几名学生的研究生培训,所描述的工作将有助于使用人类Motion.url的计算文本:http://luthuli.cs.uiuc.edu/~daf/~daf/action.html
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Forsyth其他文献
Supplement - Convex Decomposition of Indoor Scenes
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
David Forsyth - 通讯作者:
David Forsyth
Hidden Markov Models
隐马尔可夫模型
- DOI:
10.1007/978-3-030-18114-7_13 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
David Forsyth - 通讯作者:
David Forsyth
Preserving Image Properties Through Initializations in Diffusion Models
通过扩散模型中的初始化保留图像属性
- DOI:
10.1109/wacv57701.2024.00516 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jeffrey Zhang;Shao;Kedan Li;David Forsyth - 通讯作者:
David Forsyth
Scientific report on Modeling and Prediction of Human Intent for Primitive Activation
关于人类原始激活意图的建模和预测的科学报告
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
David Forsyth - 通讯作者:
David Forsyth
Fully spectrum-sliced four-wave mixing wavelength conversion in a Semiconductor Optical Amplifier
半导体光放大器中的全光谱切片四波混频波长转换
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0.5
- 作者:
David Forsyth - 通讯作者:
David Forsyth
David Forsyth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Forsyth', 18)}}的其他基金
RI: Medium: Creating Knowledge with All-Novel-Class Computer Vision
RI:媒介:利用新颖的计算机视觉创造知识
- 批准号:
2106825 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Computational Behavioral Science: Modeling, Analysis, and Visualization of Social and Communicative Behavior
合作研究:计算行为科学:社交和交流行为的建模、分析和可视化
- 批准号:
1029035 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Continuing Grant
RI: Small: Exploiting Geometric and Illumination Context in Indoor Scenes
RI:小:利用室内场景中的几何和照明环境
- 批准号:
0916014 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
INT2-Medium: Understanding the meaning of images
INT2-Medium:理解图像的含义
- 批准号:
0803603 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Finding and Tracking People from the Bottom Up
自下而上查找和跟踪人员
- 批准号:
0098682 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Continuing Grant
SGER: MCMC Algorithms for Object Recognition
SGER:用于对象识别的 MCMC 算法
- 批准号:
9979201 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Standard Grant
A Spiral Approach to Chemical Concepts Using GC/MS
使用 GC/MS 探索化学概念的螺旋方法
- 批准号:
9850580 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Standard Grant
Recognising curved surfaces from their outlines
从轮廓识别曲面
- 批准号:
9596025 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
基于人类关键行为的自动驾驶实时决策规划
- 批准号:62303304
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
泥河湾盆地中更新世人类行为及环境适应研究:以蔚县蔡家沟遗址为例
- 批准号:42371165
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
都市圈尺度下基于时空知识图谱的人类移动行为规律分析及其规划应用
- 批准号:52308077
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
青藏高原邱桑遗址周边中更新世中晚期人类行为及环境适应研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
群居灵长类动物对人类干扰的行为响应和适应机制研究——以四川白河国家级自然保护区川金丝猴为例
- 批准号:32270548
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
相似海外基金
Human rights in global supply chains: Measuring the effectiveness of home state regulatory models on corporate behaviour
全球供应链中的人权:衡量母国监管模式对企业行为的有效性
- 批准号:
AH/Y007565/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Caesarean Delivery's Effect on the Early Life Microbiome and Neurodevelopment
剖腹产对生命早期微生物组和神经发育的影响
- 批准号:
10537858 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Computational modelling of team foraging to understand human behaviour and cognition
团队觅食的计算模型以了解人类行为和认知
- 批准号:
2887185 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Contributions of Astrocyte Kir4.1/5.1 Channels to Disordered Breathing in Rett Syndrome
星形胶质细胞 Kir4.1/5.1 通道对 Rett 综合征呼吸障碍的影响
- 批准号:
10606795 - 财政年份:2023
- 资助金额:
-- - 项目类别:
The role of ependymal cells in multiple sclerosis progression
室管膜细胞在多发性硬化症进展中的作用
- 批准号:
472974 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Operating Grants