SGER: Duality and Warm Starting in Integer Programming
SGER:整数规划中的对偶性和热启动
基本信息
- 批准号:0534862
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-08-01 至 2006-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Large-scale optimization problems arise in a wise variety of important application areas, such as the design of supply chains, logistics networks, telecommunications networks, cancer treatment plans, and pharmaceutical products. Many of the models that arise in these important areas involve variables that must take on integer values. Such models are notoriously difficult to solve and the data that are needed to form the models are rarely known with certainty in advance. Hence, such models are subject to change, even after the solution process is underway. Current solution methods addresses only static models and does not allow for this kind of change. A change to the model once the solution process is underway generally means that the model must be resolved from scratch. This SGER grant provides funding for the development of tools that will help alleviate this problem by providing post-solution sensitivity analysis and resolve capabilities that can be integrated with existing solution algorithms. Such tools will enable the user to either quickly approximate the effect of a given change in the input data on the final solution or to efficiently resolve the problem without starting from scratch.If successful, this work will allow the development of tools for solving difficult, large-scale optimization problems for which the input data are subject to change or for which it is desirable to be able to answer various "what-if" questions after the fact. It will also enable more efficient implementation of various methodologies that require the iterative solution of a series of very similar models. Such methodologies will benefit greatly from the development of the "warm-starting" procedures that we are proposing, which will allow the solution process to be started from an advanced starting point based on information gained from prior solution of a similar model. All of the methodology developed will be implemented and made freely available as open source software in order to reach the widest possible audience
大规模优化问题出现在许多重要的应用领域,如供应链、物流网络、电信网络、癌症治疗计划和药品的设计。在这些重要领域中出现的许多模型都涉及必须采用整数值的变量。众所周知,这样的模型很难求解,而形成模型所需的数据也很少能事先确定。因此,即使在解决方案过程进行之后,这样的模型也会发生变化。当前的解决方案方法只处理静态模型,不允许这种类型的更改。一旦解决方案流程正在进行,对模型的更改通常意味着必须从头开始解决模型。SGER拨款为工具的开发提供资金,通过提供解决方案后的敏感性分析和解决能力,可以与现有的解决方案算法集成,从而帮助缓解这个问题。这些工具将使用户能够快速估计输入数据中给定更改对最终解决方案的影响,或者无需从头开始就能有效地解决问题。如果成功,这项工作将允许开发工具来解决困难的、大规模的优化问题,这些问题的输入数据可能会发生变化,或者希望能够在事实之后回答各种“假设”问题。它还能够更有效地实现各种方法,这些方法需要对一系列非常相似的模型进行迭代解决。这些方法将极大地受益于我们提出的“预热启动”程序的发展,这将允许基于从类似模型的先前解中获得的信息从高级起点开始求解过程。所开发的所有方法都将作为开源软件实现并免费提供,以便接触到尽可能广泛的受众
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Theodore Ralphs其他文献
Theodore Ralphs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Theodore Ralphs', 18)}}的其他基金
Optimization in an Uncertain World: A Unified Framework for Optimization Models Involving Adversaries
不确定世界中的优化:涉及对手的优化模型的统一框架
- 批准号:
1435453 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Computational Methods for Discrete Conic Optimization
离散圆锥优化的计算方法
- 批准号:
1319893 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
Decomposition-Based Optimization: A New Solver Paradigm
基于分解的优化:新的求解器范式
- 批准号:
1130914 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Bilevel Integer Programming: Theory and Algorithms
双层整数规划:理论与算法
- 批准号:
0728011 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Exploiting Cyberinfrastructure to Solve Real-Time Integer Programs
协作研究:利用网络基础设施解决实时整数程序
- 批准号:
0522796 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
Scalable Parallel Algorithms for Large-Scale Discrete Optimization
用于大规模离散优化的可扩展并行算法
- 批准号:
0102687 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Continuing Grant
相似海外基金
Categorical Duality and Semantics Across Mathematics, Informatics and Physics and their Applications to Categorical Machine Learning and Quantum Computing
数学、信息学和物理领域的分类对偶性和语义及其在分类机器学习和量子计算中的应用
- 批准号:
23K13008 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Closing in on the one-dimensional Efimov effect through boson-fermion duality
通过玻色子-费米子对偶性接近一维 Efimov 效应
- 批准号:
23K03267 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creating a new theory of computer algebra with duality spaces
创建具有对偶空间的计算机代数新理论
- 批准号:
23K03076 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
On the study of the duality relations of finite and symmetric multiple zeta values using symmetrization maps
利用对称图研究有限对称多zeta值的对偶关系
- 批准号:
23K12962 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Kac-Moody quantum symmetric pairs, KLR algebras and generalized Schur-Weyl duality
Kac-Moody 量子对称对、KLR 代数和广义 Schur-Weyl 对偶性
- 批准号:
EP/W022834/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fellowship
Koszul duality and the singularity category for the enhanced group cohomology ring
增强群上同调环的 Koszul 对偶性和奇点范畴
- 批准号:
EP/W036320/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: Decomposition, duality and Picard groups in chromatic homotopy theory
职业:色同伦理论中的分解、对偶性和皮卡德群
- 批准号:
2239362 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Conformal Field Theories with Higher Spin Symmetry and Duality Invariance
具有更高自旋对称性和对偶不变性的共形场论
- 批准号:
DP230101629 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovery Projects
Two-photon fluorescence lifetime imaging microscopy utilizing the space-time duality
利用时空二象性的双光子荧光寿命成像显微镜
- 批准号:
10593761 - 财政年份:2023
- 资助金额:
-- - 项目类别:














{{item.name}}会员




