Decomposition-Based Optimization: A New Solver Paradigm
基于分解的优化:新的求解器范式
基本信息
- 批准号:1130914
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-10-01 至 2014-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research objectives of this award are (1) to develop advanced methodologies based on decomposition for the solution of large-scale optimization problems, (2) to integrate these methodologies with current state-of-the-art techniques, and (3) to make these methodologies accessible to users through modeling languages and extensions to the standard APIs (Application Program Interfaces) provided by current state-of-the-art optimization software. Although decomposition techniques have proven very effective in certain applications, these methods have not been adopted in commercial solvers due to lack of a mathematical theory integrating other advanced techniques; difficulties in implementation; challenges associated with automatic detection of model structure; and lack of support in modeling languages for expressing decomposition strategies. This research aims to overcome these challenges and to develop practical methodologies and implementations of advanced methods, along with support for modeling by practitioners.The impact of this research will be in allowing practitioners to have access to powerful methods of optimizing large-scale systems, whose ever-increasing complexity is being driven in practice by the increased availability of data and storage. Among other things, decomposition methods are the methods of choice for the optimization of large-scale systems consisting of smaller subsystems linked by relatively few system-level constraints. One typical example of such a system is a logistics system consisting of geographically distributed warehouses, each with an associated fleet of delivery vehicles. When the system-level constraints are relaxed, the underlying optimization problem decomposes, leading to more efficient solution methods. Decomposition may provide a practical approach to parallelization and thus a means of capitalizing on the commoditization of multi-core/multi-processor architectures. All methodologies will be implemented in open source and distributed through the COIN-OR open source repository (http://www.coin-or.org), ensuring wide dissemination.
该奖项的研究目标是(1)开发基于分解的高级方法来解决大规模优化问题,(2)将这些方法与当前最先进的技术相结合,以及(3)通过建模语言和对当前最先进的优化软件提供的标准API(应用程序接口)的扩展,使用户可以使用这些方法。虽然分解技术在某些应用中被证明是非常有效的,但这些方法还没有被商业求解器采用,原因是缺乏整合其他先进技术的数学理论;实现困难;与模型结构自动检测相关的挑战;以及缺乏对表达分解策略的建模语言的支持。这项研究旨在克服这些挑战,开发实用的方法和高级方法的实现,并支持从业者进行建模。这项研究的影响将是使从业者能够获得优化大规模系统的强大方法,其日益增长的复杂性实际上是由数据和存储的可用性增加推动的。在其他方面,分解方法是优化由相对较少的系统级约束连接的较小子系统组成的大系统的选择方法。这种系统的一个典型例子是由地理上分散的仓库组成的物流系统,每个仓库都有一支相关的运输车辆车队。当系统级约束放松时,底层优化问题就会分解,从而产生更有效的求解方法。分解可以提供一种实用的并行化方法,从而提供一种利用多核/多处理器架构的商品化的手段。所有方法都将以开源方式实施,并通过硬币或开源储存库(http://www.coin-or.org),)分发,以确保广泛传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Theodore Ralphs其他文献
Theodore Ralphs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Theodore Ralphs', 18)}}的其他基金
Optimization in an Uncertain World: A Unified Framework for Optimization Models Involving Adversaries
不确定世界中的优化:涉及对手的优化模型的统一框架
- 批准号:
1435453 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Computational Methods for Discrete Conic Optimization
离散圆锥优化的计算方法
- 批准号:
1319893 - 财政年份:2013
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Bilevel Integer Programming: Theory and Algorithms
双层整数规划:理论与算法
- 批准号:
0728011 - 财政年份:2007
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
SGER: Duality and Warm Starting in Integer Programming
SGER:整数规划中的对偶性和热启动
- 批准号:
0534862 - 财政年份:2005
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Exploiting Cyberinfrastructure to Solve Real-Time Integer Programs
协作研究:利用网络基础设施解决实时整数程序
- 批准号:
0522796 - 财政年份:2005
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Scalable Parallel Algorithms for Large-Scale Discrete Optimization
用于大规模离散优化的可扩展并行算法
- 批准号:
0102687 - 财政年份:2001
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
基于tag-based单细胞转录组测序解析造血干细胞发育的可变剪接
- 批准号:81900115
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
- 批准号:81771933
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
Reality-based Interaction用户界面模型和评估方法研究
- 批准号:61170182
- 批准年份:2011
- 资助金额:57.0 万元
- 项目类别:面上项目
Multistage,haplotype and functional tests-based FCAR 基因和IgA肾病相关关系研究
- 批准号:30771013
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
差异蛋白质组技术结合Array-based CGH 寻找骨肉瘤分子标志物
- 批准号:30470665
- 批准年份:2004
- 资助金额:8.0 万元
- 项目类别:面上项目
GaN-based稀磁半导体材料与自旋电子共振隧穿器件的研究
- 批准号:60376005
- 批准年份:2003
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
- 批准号:
2339216 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Adaptive Ising-machine-based Solvers for Large-scale Real-world Geospatial Optimization Problems
基于自适应 Ising 机的大规模现实世界地理空间优化问题求解器
- 批准号:
24K20779 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Explanation-based Optimization of Diversified Information Retrieval to Enhance AI Systems
职业:基于解释的多样化信息检索优化以增强人工智能系统
- 批准号:
2339932 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Optimization-based Implicit Deep Learning, Theory and Applications
基于优化的隐式深度学习、理论与应用
- 批准号:
2309810 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
SBIR Phase I: Optimization and scaling of ladder polymers for membrane-based gas separations
SBIR 第一阶段:用于膜基气体分离的梯形聚合物的优化和规模化
- 批准号:
2151444 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Design, Analysis, and Optimization of Equitable and Value-based Baseline Testing Policies for Sports-Related Concussion
运动相关脑震荡公平且基于价值的基线测试政策的设计、分析和优化
- 批准号:
10649169 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Coupling PDE-Based Computational Inversion and Learning Via Weighted Optimization
通过加权优化耦合基于偏微分方程的计算反演和学习
- 批准号:
2309802 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
SBIR Phase I: Optimization of a Novel Compliant Mechanisms-Based Laparoscope Cleaning Device
SBIR 第一阶段:基于新型顺应机制的腹腔镜清洁装置的优化
- 批准号:
2213695 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Speeding-up SAT-based Constraint Optimization Solvers
加速基于 SAT 的约束优化求解器
- 批准号:
23K11047 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developments of variational quantum algorithms based on circuit structure optimization
基于电路结构优化的变分量子算法研究进展
- 批准号:
23K03266 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




