Formal Framework for Analysis of Adaptation in Multi-Agent Systems (ADAPT2)

多智能体系统适应分析的正式框架 (ADAPT2)

基本信息

  • 批准号:
    0535182
  • 负责人:
  • 金额:
    $ 26.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-06-15 至 2009-05-31
  • 项目状态:
    已结题

项目摘要

This research will develop a general framework for mathematical analysis of collective behavior of adaptive multi-agent systems. Adaptation is an essential requirement for autonomous multi-agent systems functioning in uncertain dynamic environments, for example, distributed robot teams, modules in an embedded system, nodes in a sensor network, or software agents. Adaptation allows agents to change their behavior in response to changes in the environment or actions of other agents. Mathematical analysis of adaptive systems will enable researchers to design more robust systems, and to predict, control and understand their behavior. The research will study agents that make decisions autonomously based on local information, which comes either from interactions with other agents or from the local environment. In particular, this project will examine different classes of adaptive behavior, such as adaptation through reinforcement and adaptation through communication via spatially extended fields. Reinforcement learning is a powerful framework where an agent learns optimal actions through a trial and error exploration of the environment and by receiving rewards for good actions. Collective adaptation can also take place in systems in which agents are coupled through external fields, for example, through markers they deposit in the environment. Although adaptation and learning have long been the focus of the artificial intelligence community, there is relatively little work examining how a group of adaptive agents will act. The difficulty arises from the fact that agents adapt in the presence of other adaptive agents. Often it is not a priori clear how the system will act or even if adaptation will achieve the desired goals. In addition, the designer has very little guidance about what individual agent characteristics are required to guarantee the desired collective behavior. The lack of a formal understanding of these problems has prevented researchers from taking full advantage of this powerful design paradigm. The mathematical analysis to be performed in this research will help answer these questions. There is a critical need for better foundations and tools for analyzing multi-agent behavior and verifying control mechanisms for multi-agent systems. The lack of such tools stands in the way of wider deployment of such systems, especially robots and embedded systems. Experiments and simulations that are necessary to validate control algorithms are time consuming and costly. Quantitative understanding provided by the mathematical models to be developed in this project will lead to more robust and efficient control algorithms and greater deployment of such systems in the field.
这项研究将为自适应多智能体系统的集体行为的数学分析开发一个通用框架。适应是在不确定的动态环境中运行的自主多智能体系统的基本要求,例如分布式机器人团队、嵌入式系统中的模块、传感器网络中的节点或软件代理。适应允许代理改变其行为以响应环境的变化或其他代理的行为。自适应系统的数学分析将使研究人员能够设计更强大的系统,并预测、控制和理解它们的行为。该研究将研究根据本地信息自主做出决策的代理,这些信息要么来自与其他代理的交互,要么来自本地环境。特别是,该项目将研究不同类别的适应行为,例如通过强化的适应和通过空间扩展场进行交流的适应。强化学习是一个强大的框架,代理通过对环境的试错探索并通过良好行动获得奖励来学习最佳行动。集体适应也可以发生在通过外部场耦合的系统中,例如通过它们在环境中沉积的标记。尽管适应和学习长期以来一直是人工智能界的焦点,但研究一组自适应智能体如何行动的工作相对较少。困难来自于代理在其他自适应代理存在的情况下进行适应的事实。通常,我们并不清楚系统将如何运作,甚至适应是否会实现预期目标。此外,设计者对于需要哪些个体代理特征来保证所需的集体行为几乎没有指导。由于缺乏对这些问题的正式理解,研究人员无法充分利用这种强大的设计范式。本研究中进行的数学分析将有助于回答这些问题。迫切需要更好的基础和工具来分析多智能体行为和验证多智能体系统的控制机制。缺乏此类工具阻碍了此类系统的更广泛部署,尤其是机器人和嵌入式系统。验证控制算法所需的实验和模拟既耗时又昂贵。该项目中开发的数学模型提供的定量理解将导致更强大和更高效的控制算法以及此类系统在现场的更大部署。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kristina Lerman其他文献

Estimating Individualized Daily Self-Reported Affect with Wearable Sensors
使用可穿戴传感器估计个性化的日常自我报告影响
Heterogeneous Effects of Software Patches in a Multiplayer Online Battle Arena Game
多人在线竞技场游戏中软件补丁的异质效应
Influence Maximization for Social Good: Use of Social Networks in Low Resource Communities
社会公益影响力最大化:在资源匮乏社区中使用社交网络
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Yadav;Milind Tambe;Kristina Lerman;A. Galstyan
  • 通讯作者:
    A. Galstyan
Anger Breeds Controversy: Analyzing Controversy and Emotions on Reddit
愤怒引发争议:分析 Reddit 上的争议和情绪
  • DOI:
    10.48550/arxiv.2212.00339
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kai Chen;Zihao He;Rong;Jonathan May;Kristina Lerman
  • 通讯作者:
    Kristina Lerman
Pattern Discovery in Time Series with Byte Pair Encoding
使用字节对编码的时间序列中的模式发现
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Tavabi;Kristina Lerman
  • 通讯作者:
    Kristina Lerman

Kristina Lerman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kristina Lerman', 18)}}的其他基金

SciSIP: Knowledge Networks and the Dynamics of Innovation
SciSIP:知识网络和创新动力
  • 批准号:
    1360058
  • 财政年份:
    2014
  • 资助金额:
    $ 26.8万
  • 项目类别:
    Continuing Grant
CIF: Small: BCSP: Rethinking Network Structure: The Role of Interactions in the Analysis of Network Structure
CIF:小:BCSP:重新思考网络结构:交互在网络结构分析中的作用
  • 批准号:
    1217605
  • 财政年份:
    2012
  • 资助金额:
    $ 26.8万
  • 项目类别:
    Standard Grant
SoCS: A Mathematical Framework for Modeling Behavior of Diverse Groups
SoCS:不同群体行为建模的数学框架
  • 批准号:
    0968370
  • 财政年份:
    2010
  • 资助金额:
    $ 26.8万
  • 项目类别:
    Standard Grant
NetSE: Small: Structure and Dynamics of Complex Networks
NetSE:小型:复杂网络的结构和动态
  • 批准号:
    0915678
  • 财政年份:
    2009
  • 资助金额:
    $ 26.8万
  • 项目类别:
    Continuing Grant
III-COR-small: Harvesting Concept Hierarchies from Social Data
III-COR-small:从社交数据中收获概念层次结构
  • 批准号:
    0812677
  • 财政年份:
    2008
  • 资助金额:
    $ 26.8万
  • 项目类别:
    Standard Grant
INTEROP: Rapid Deployment of Humanitarian Assistance Social Networks for ad hoc Geospatial Data Sharing (GeoNets)
INTEROP:快速部署人道主义援助社交网络以实现临时地理空间数据共享 (GeoNets)
  • 批准号:
    0753124
  • 财政年份:
    2008
  • 资助金额:
    $ 26.8万
  • 项目类别:
    Continuing Grant
Automatic Synthesis and Optimization of Controllers for Multi-Robot Coordination
多机器人协调控制器的自动合成与优化
  • 批准号:
    0413321
  • 财政年份:
    2004
  • 资助金额:
    $ 26.8万
  • 项目类别:
    Standard Grant
POWRE: Mathematical Modeling of Multi-Agent Systems
POWRE:多智能体系统的数学建模
  • 批准号:
    0074790
  • 财政年份:
    2000
  • 资助金额:
    $ 26.8万
  • 项目类别:
    Standard Grant

相似海外基金

GOALI: A System Theoretical Framework for Modeling, Analysis and Closed-loop Management of Supply Chains of Perishable Products
GOALI:易腐产品供应链建模、分析和闭环管理的系统理论框架
  • 批准号:
    2232412
  • 财政年份:
    2023
  • 资助金额:
    $ 26.8万
  • 项目类别:
    Standard Grant
Evaluating equitable access to diabetic retinopathy screening using social value judgement informed distributional cost-effectiveness analyses (Oppression framework informed equity cost-effectiveness analysis of diabetic retinopathy screening)
使用社会价值判断知情的分配成本效益分析评估糖尿病视网膜病变筛查的公平性(压迫框架知情的糖尿病视网膜病变筛查公平成本效益分析)
  • 批准号:
    495212
  • 财政年份:
    2023
  • 资助金额:
    $ 26.8万
  • 项目类别:
CC* Integration-Small: Network cyberinfrastructure innovation with an intelligent real-time traffic analysis framework and application-aware networking
CC* Integration-Small:网络基础设施创新,具有智能实时流量分析框架和应用感知网络
  • 批准号:
    2322369
  • 财政年份:
    2023
  • 资助金额:
    $ 26.8万
  • 项目类别:
    Standard Grant
Interaction-driven macroeconomic fluctuations: Theoretical framework and quantitive analysis
交互驱动的宏观经济波动:理论框架与定量分析
  • 批准号:
    23H00796
  • 财政年份:
    2023
  • 资助金额:
    $ 26.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A statistical framework for the analysis of the evolution in shape and topological structure of random objects
用于分析随机物体形状和拓扑结构演化的统计框架
  • 批准号:
    2311338
  • 财政年份:
    2023
  • 资助金额:
    $ 26.8万
  • 项目类别:
    Standard Grant
CAREER: Theoretical Framework for Design and Analysis of Snapshot Compressive Imaging Systems
职业:快照压缩成像系统设计和分析的理论框架
  • 批准号:
    2237538
  • 财政年份:
    2023
  • 资助金额:
    $ 26.8万
  • 项目类别:
    Continuing Grant
NSF Convergence Accelerator Track H: Towards a Community-Driven Framework for the Creation and Impact Analysis of Digital Accessibility Maps with Persons with Disabilities
NSF 融合加速器轨道 H:迈向社区驱动的框架,用于残疾人数字无障碍地图的创建和影响分析
  • 批准号:
    2340870
  • 财政年份:
    2023
  • 资助金额:
    $ 26.8万
  • 项目类别:
    Standard Grant
A mega-analysis framework for delineating autism neurosubtypes
描述自闭症神经亚型的大型分析框架
  • 批准号:
    10681965
  • 财政年份:
    2023
  • 资助金额:
    $ 26.8万
  • 项目类别:
A scalable integrated multi-modal single cell analysis framework for gene regulatory and cell-cell interaction networks
用于基因调控和细胞间相互作用网络的可扩展集成多模式单细胞分析框架
  • 批准号:
    2233887
  • 财政年份:
    2023
  • 资助金额:
    $ 26.8万
  • 项目类别:
    Continuing Grant
Genetic analysis for stratification and discovery in dementia patients by extending the NOMALY framework to non-coding variation
通过将 NOMALY 框架扩展到非编码变异,对痴呆症患者进行分层和发现的遗传分析
  • 批准号:
    10073100
  • 财政年份:
    2023
  • 资助金额:
    $ 26.8万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了