Electronic Structure Calculations of Materials by Auxiliary-Field Quantum Monte Carlo

辅助场量子蒙特卡罗材料电子结构计算

基本信息

  • 批准号:
    0535592
  • 负责人:
  • 金额:
    $ 37.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-03-01 至 2011-02-28
  • 项目状态:
    已结题

项目摘要

The PI and collaborators have developed an auxiliary-field quantum Monte Carlo (QMC) method that exhibits promising characteristics for improving the capabilities for electronic structure calculations of materials. The PI proposes to apply the new method to materials- specific problems, and continue its development. The project aims for: (i) accurate calculations of the ground state of solids, (ii) computation of generalized forces for geometry and structural optimizations in molecules and solids, (iii) calculations of excited-state properties with applications to prototypical semiconductors, and (iv) both ab initio and modelcalculations of strongly correlated materials.Intellectual merit. Understanding and predicting materials properties requires robust and reliable calculations at the most fundamental level. Often the desired effects originate from electron correlations, and small errors in their treatment can result in crucial and qualitative differences in the properties. Despite their tremendous success, standard computational electronic structure methods based on density functional theory are not always sufficient. Especially in strongly correlated materials, which are of particular theoretical and technological importance, they can sometimes lead to qualitatively incorrect results. QMC methods, which allow many-body calculations by stochastic sampling, are a promising alternative for treating correlated materials. Limitations in their capability, however, have thus far prevented wider applications of QMC to the many problems where accurate computations of electron correlations are critically needed. By exploiting opportunities that the new auxiliary-field framework presents, the PI will address some of these limitations.The PI's past experience and on-going research have ideally positioned him to effectively pursue the proposed project. Successful completion of this research will enhance the capabilities of first-principles computation in condensed matter, and advance the study of correlated materials. Further, the theoretical framework and technologies that are developed will also be relevant to nuclear physics, high-energy physics, and quantum chemistry, where similar approaches are used for non-perturbative calculations in many-body systems.Broader impacts. Building on past experience and success, the PI will continue to integrate research with education and outreach activities, by mentoring both undergraduate and graduate students in research, incorporating materials from this project into a new course, reaching out to minority students at Hampton University (HBCU), and fostering interdisciplinary collaboration in computational science education and research on campus. In the larger scientific community, the PI will continue to play an active role in training students, post-docs, and senior researchers through schools and workshops, developing software andtutorials for hands-on learning of new theoretical and computational approaches. In addition, the project will contribute to the build-up of computer codes for modeling and simulation of materials, by advancing QMC methodology to enable and facilitate its wide use, and by direct code contribution.***
PI和合作者开发了一种量子场量子蒙特卡罗(QMC)方法,该方法具有提高材料电子结构计算能力的前景。PI建议将新方法应用于材料特定的问题,并继续其发展。该项目旨在:(i)固体基态的精确计算,(ii)分子和固体中几何和结构优化的广义力的计算,(iii)激发态性质的计算及其在原型半导体中的应用,以及(iv)强相关材料的从头算和模型计算。理解和预测材料特性需要在最基本的层面上进行稳健可靠的计算。通常,所需的效应源于电子相关性,处理过程中的微小误差可能导致性质的关键和定性差异。尽管他们取得了巨大的成功,标准的计算电子结构方法的基础上密度泛函理论并不总是足够的。特别是在强相关材料中,这是特别重要的理论和技术,他们有时会导致定性不正确的结果。 QMC方法允许通过随机采样进行多体计算,是处理相关材料的一种有前途的选择。然而,它们的能力的限制,迄今为止,阻止了更广泛的应用QMC的许多问题,精确计算的电子相关性是迫切需要的。通过利用新的领域框架所带来的机会,PI将解决其中的一些限制。PI过去的经验和正在进行的研究使他能够有效地实施拟议的项目。该研究的成功完成将增强凝聚态第一性原理计算的能力,推动相关材料的研究。此外,所开发的理论框架和技术也将与核物理学、高能物理学和量子化学相关,其中类似的方法用于多体系统中的非微扰计算。在过去的经验和成功的基础上,PI将继续将研究与教育和推广活动相结合,通过指导本科生和研究生的研究,将该项目的材料纳入新课程,接触汉普顿大学(HBCU)的少数民族学生,并促进计算科学教育和校园研究的跨学科合作。在更大的科学界,PI将继续发挥积极作用,通过学校和讲习班培训学生,博士后和高级研究人员,开发软件和教程,用于动手学习新的理论和计算方法。此外,该项目还将通过推进QMC方法以促进其广泛使用,并通过直接代码贡献,为材料建模和模拟的计算机代码的建立做出贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shiwei Zhang其他文献

Automatic order detection and restoration through systematically improvable variational wave functions
通过系统改进的变分波函数自动阶次检测和恢复
  • DOI:
    10.1103/physrevresearch.6.013237
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Ryan Levy;M. Morales;Shiwei Zhang
  • 通讯作者:
    Shiwei Zhang
Ruthenium complex-catalyzed coupling of vinyl halides with olefins
钌配合物催化卤乙烯与烯烃的偶联
  • DOI:
    10.1016/0022-328x(92)83134-4
  • 发表时间:
    1992
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    T. Mitsudo;Masakazu Takagi;Shiwei Zhang;Yoshihisa Watanabe
  • 通讯作者:
    Yoshihisa Watanabe
Rhodium-Catalyzed Copolymerization of Norbornadienes and Norbornenes with Carbon Monoxide
铑催化降冰片二烯和降冰片烯与一氧化碳的共聚
  • DOI:
    10.1021/ma000510d
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Shiwei Zhang;T. Kaneko;Shigetoshi Takahashi
  • 通讯作者:
    Shigetoshi Takahashi
Lewis acid promoted preparation of isomerically pure fullerenols from fullerene peroxides C60(OOt-Bu)6 and C60(O)(OOt-Bu)6.
路易斯酸促进从富勒烯过氧化物C60(OOt-Bu)6和C60(O)(OOt-Bu)6制备异构纯富勒烯醇。
  • DOI:
    10.1021/jo060012o
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fudong Wang;Zuo Xiao;Zhipeng Yao;Zhenshan Jia;Shaohua Huang;L. Gan;Jiang Zhou;G. Yuan;Shiwei Zhang
  • 通讯作者:
    Shiwei Zhang
Auxiliary-field quantum Monte Carlo for correlated electron systems
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shiwei Zhang
  • 通讯作者:
    Shiwei Zhang

Shiwei Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shiwei Zhang', 18)}}的其他基金

Ab Initio Calculations in Correlated Electron Models and Materials
相关电子模型和材料中的从头算
  • 批准号:
    1409510
  • 财政年份:
    2014
  • 资助金额:
    $ 37.2万
  • 项目类别:
    Continuing Grant
Electronic Structure Calculations in Solids by Auxiliary-Field Quantum Monte Carlo
通过辅助场量子蒙特卡罗计算固体中的电子结构
  • 批准号:
    1006217
  • 财政年份:
    2010
  • 资助金额:
    $ 37.2万
  • 项目类别:
    Continuing Grant
Breakthrough Peta-scale Quantum Monte Carlo Calculations
突破性千万亿级量子蒙特卡罗计算
  • 批准号:
    0940889
  • 财政年份:
    2009
  • 资助金额:
    $ 37.2万
  • 项目类别:
    Standard Grant
CAREER: Understanding Strong Correlations in Real Materials with Scalable High Performance Computing
职业:通过可扩展的高性能计算了解真实材料中的强相关性
  • 批准号:
    9734041
  • 财政年份:
    1998
  • 资助金额:
    $ 37.2万
  • 项目类别:
    Continuing Grant

相似海外基金

Accurate Electronic and Vibrational Structure Calculations of Metal-Containing Small Molecules of Importance to Precision Measurement and Laser Cooling
含金属小分子的精确电子和振动结构计算对于精密测量和激光冷却具有重要意义
  • 批准号:
    2309253
  • 财政年份:
    2023
  • 资助金额:
    $ 37.2万
  • 项目类别:
    Standard Grant
Elucidating electronic structure using single point and spectral simulation calculations
使用单点和光谱模拟计算阐明电子结构
  • 批准号:
    2754037
  • 财政年份:
    2022
  • 资助金额:
    $ 37.2万
  • 项目类别:
    Studentship
Fast and accurate eigenvalue calculations by hierarchical low-rank approximation and its application to large-scale electronic structure calculations
分层低阶近似快速准确的特征值计算及其在大规模电子结构计算中的应用
  • 批准号:
    22H03598
  • 财政年份:
    2022
  • 资助金额:
    $ 37.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Frameworks: An Interoperable Software Ecosystem for Many-Body Electronic Structure Calculations
框架:用于多体电子结构计算的可互操作软件生态系统
  • 批准号:
    2103991
  • 财政年份:
    2021
  • 资助金额:
    $ 37.2万
  • 项目类别:
    Standard Grant
RII Track-4: Optimizing the Chemistry of Heterointerfaces in Photovoltaics: A Combination of Electronic Structure Calculations and Machine Learning Approach
RII Track-4:优化光伏异质界面的化学:电子结构计算和机器学习方法的结合
  • 批准号:
    2150816
  • 财政年份:
    2021
  • 资助金额:
    $ 37.2万
  • 项目类别:
    Standard Grant
Next-generation informatics connecting ultra-large-scale electronic structure calculations and flexible devices
连接超大规模电子结构计算和柔性设备的下一代信息学
  • 批准号:
    21K19773
  • 财政年份:
    2021
  • 资助金额:
    $ 37.2万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Accurate Electronic and Vibrational Structure Calculations of Metal-Containing Small Molecules of Importance to Precision Measurement and Laser Cooling
含金属小分子的精确电子和振动结构计算对于精密测量和激光冷却具有重要意义
  • 批准号:
    2011794
  • 财政年份:
    2020
  • 资助金额:
    $ 37.2万
  • 项目类别:
    Standard Grant
Domain decomposition methods for electronic structure calculations
电子结构计算的域分解方法
  • 批准号:
    411724963
  • 财政年份:
    2019
  • 资助金额:
    $ 37.2万
  • 项目类别:
    Research Grants
Development of nonempirical alloy design scheme through electronic structure calculations
通过电子结构计算开发非经验合金设计方案
  • 批准号:
    19K04993
  • 财政年份:
    2019
  • 资助金额:
    $ 37.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RII Track-4: Optimizing the Chemistry of Heterointerfaces in Photovoltaics: A Combination of Electronic Structure Calculations and Machine Learning Approach
RII Track-4:优化光伏异质界面的化学:电子结构计算和机器学习方法的结合
  • 批准号:
    1929206
  • 财政年份:
    2019
  • 资助金额:
    $ 37.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了