Domain decomposition methods for electronic structure calculations
电子结构计算的域分解方法
基本信息
- 批准号:411724963
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Electronic structure calculations are paramount in theoretical chemistry, physics, and material science. Indeed, among the top ten most cited scientific articles, two papers are related to this topic. Despite the fact that this field deals with the discretization of eigenvalue problems, which is a well-established subject in numerical analysis, the expertise of applied mathematics is little involved.Within the proposed project, the aim is to develop novel domain decomposition (DD) algorithms for eigenvalue problems which arise in electronic structure calculation like the Kohn-Sham DFT (Density Functional Theory) equations. The approach within this project is based on the idea that domain decomposition for eigenvalue problems is not fundamentally different than for source problems. Despite this fact, DD-methods for eigenvalue problems are less popular than for source problems. Additionally, recent work in the context of implicit solvation models and the analysis of those methods show that the DD-method is scalable for domains of an increasing number of fixed-size sub-domains, like e.g. for chain-like molecules or proteins, even without a so-called coarse-correction.The problems to be embraced within this project are manifold and contain: i) non-linear eigenvalue problems, ii) a large number of eigenvalues to be determined, iii) eigenvalue problems on unbounded domains and iv) dealing with potentials that contain Coulomb-like singularities.The project is a first step within a broader long-term plan to derive efficient local basis functions based on local reduced order modeling as an alternative of the widely-used but empirical contracted Gaussian basis functions. In fact, the domain decomposition strategy allows to localise the equations and opens the door to the application of reduced order modeling with certified a posteriori error estimates in a second step.
电子结构计算在理论化学、物理学和材料科学中至关重要。事实上,在前十名被引用最多的科学文章中,有两篇论文与这个主题有关。尽管这一领域涉及本征值问题的离散化,这是数值分析中一个成熟的主题,但应用数学的专业知识很少涉及。在拟议的项目中,目的是开发新的区域分解(DD)算法,用于电子结构计算中出现的本征值问题,如Kohn-Sham DFT(密度泛函理论)方程。这个项目的方法是基于这样的想法,即特征值问题的区域分解与源问题没有根本的不同。尽管如此,DD-方法的特征值问题是不太受欢迎的源问题。此外,最近在隐式溶剂化模型的背景下的工作和对这些方法的分析表明,DD方法对于越来越多的固定大小的子域的域是可扩展的,例如对于链状分子或蛋白质,即使没有所谓的粗校正。该项目中包含的问题是多方面的,包括:i)非线性特征值问题,ii)大量的待确定的特征值,iii)无界域上的本征值问题和iv)处理包含类似库仑奇异性的势。该项目是更广泛的长期目标的第一步。长期计划,以获得有效的本地基函数的基础上,本地降阶建模作为替代广泛使用的,但经验收缩高斯基函数。事实上,区域分解策略允许本地化的方程,并打开了大门的应用程序的降阶建模与认证的后验误差估计在第二步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Benjamin Stamm其他文献
Professor Dr. Benjamin Stamm的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Benjamin Stamm', 18)}}的其他基金
Efficient and accurate continuum solvation models
高效、准确的连续溶剂化模型
- 批准号:
440641818 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
A posteriori error estimates and adaptive strategies for nonlinear models in electronic structure calculations
电子结构计算中非线性模型的后验误差估计和自适应策略
- 批准号:
516782692 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
长白山垂直带土壤动物多样性及其在凋落物分解和元素释放中的贡献
- 批准号:41171207
- 批准年份:2011
- 资助金额:85.0 万元
- 项目类别:面上项目
松嫩草地土壤动物多样性及其在凋落物分解中作用和物质能量收支研究
- 批准号:40871120
- 批准年份:2008
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Efficient Conservative High-Order Solution-Flux Domain Decomposition Methods and Local Refinements for Flows in Porous Media and Electromagnetics
多孔介质和电磁学中流动的高效保守高阶解-通量域分解方法和局部细化
- 批准号:
RGPIN-2022-04571 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Domain decomposition methods based on proper generalized decomposition for parametric heterogeneous problems
基于适当广义分解的参数异构问题域分解方法
- 批准号:
EP/V027603/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
Domain Decomposition Methods for Coupled Models of Non-Newtonian Fluids and Solid Structures
非牛顿流体与固体结构耦合模型的域分解方法
- 批准号:
2207971 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Linear Equations Solver for Domain Decomposition Based Parallel Finite Element Methods with Inconsistent Mesh
具有不一致网格的基于域分解的并行有限元方法的线性方程求解器
- 批准号:
20K19813 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Multilevel Methods for Optimal Control of Partial Differential Equations and Optimization-Based Domain Decomposition
协作研究:偏微分方程最优控制的多级方法和基于优化的域分解
- 批准号:
1913201 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Multilevel Methods for Optimal Control of Partial Differential Equations and Optimization-Based Domain Decomposition
协作研究:偏微分方程最优控制的多级方法和基于优化的域分解
- 批准号:
1913004 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Global-in-Time Domain Decomposition Methods for Evolution Partial Differential Equations with Applications to Flow and Transport in Fractured Porous Media
演化偏微分方程的全局时域分解方法及其在裂隙多孔介质流动和输运中的应用
- 批准号:
1912626 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Optimized Domain Decomposition Methods for Wave Propagation in Complex Media
复杂介质中波传播的优化域分解方法
- 批准号:
1908602 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Continuing Grant
International Workshop on Domain Decomposition Methods for PDEs
偏微分方程域分解方法国际研讨会
- 批准号:
1543876 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Domain Decomposition Methods: Algorithms and Theory
领域分解方法:算法和理论
- 批准号:
1522736 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant