Frameworks: An Interoperable Software Ecosystem for Many-Body Electronic Structure Calculations
框架:用于多体电子结构计算的可互操作软件生态系统
基本信息
- 批准号:2103991
- 负责人:
- 金额:$ 385.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The development of advanced materials is a key driver of progress in areas of national strategic importance, such as energy generation, storage, and distribution, wireless communications, and quantum technologies. For example the operation of solar panels, solid-state batteries, touch screens, flat-panel displays, and quantum computer prototypes critically relies on the properties and functionalities of advanced materials down to the scale of individual atoms. Further improving the performance of these materials, as well as designing brand new materials with novel functionalities, requires a detailed understanding of how macroscopic properties, such as the ability to carry electricity, to absorb and emit light, and to store chemical energy, emerge from the elemental composition and the atomic structure of each compound. In this context, simulating materials behavior by solving the fundamental equations of quantum mechanics on supercomputers has become an indispensable complement to experimental research. Today there exists an abundance of high-performance computing software to investigate and predict the properties of materials in their lowest energy state, or ground state. These tools are primarily based on density functional theory, an incredibly successful conceptual paradigm that allows us to find approximate yet accurate solutions of the Schrödinger equation of quantum mechanics for entire materials. While these methods are essential for predicting structural and energetic properties such as thermodynamic phase diagrams, they are not suitable to describe more advanced functional properties such as light-matter interactions, charge transport under electric and magnetic fields, and macroscopic quantum phenomena such as superconductivity. The current project fills this gap by developing a comprehensive software ecosystem to compute and predict functional properties of materials beyond what is currently possible with density functional theory. The cyberinfrastructure supported by this grant will enable the rational design of advanced functional materials at the atomic scale, and will underpin the development of next-generation materials for energy, computing, and quantum technologies. The research program will be tightly integrated with educational activities to promote scientific research in diverse communities. To this end, webinars, schools and hackathons for users and developers will be organized annually.The aim of this project is to create an interoperable software ecosystem to model and design materials at the atomic scale using many-body field-theoretic approaches. Many-body electronic structure methods define a gold standard for accuracy, reliability, and predictive power, but the widespread adoption of these methods in academia and in industry is hindered by the complexity of the underlying theories and algorithms, as well as the lack of broad interoperability and shared data standards. The project expands and combines the complementary strengths of three software packages, EPW, BerkeleyGW, and SternheimerGW, into a user-centric, containerized simulation laboratory with shared data formats and built-in compatibility layers for major density-functional theory codes. This cyberinfrastructure advances understanding of the interplay between electronic and lattice degrees of freedom in advanced materials, and expands the range of properties that can be calculated with predictive accuracy, including: finite-temperature quasiparticle band structures; light absorption and emission spectra; excitons, polarons, and their couplings; superconductivity; carrier transport; and driven quantum systems. Furthermore, this cyberinfrastructure will accelerate future software development by distributing curated, reusable, and interoperable open-source code, and by providing a platform to develop and test new algorithms and software for many-body electronic structure methods. Central to the proposed effort is the training of a diverse, inclusive, and globally competitive STEM workforce cutting across data-driven materials research and cyberinfrastructure development.This award by the Office of Advanced Cyberinfrastructure is jointly supported by the Division of Materials Research within the NSF Directorate for Mathematical and Physical Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
先进材料的开发是国家战略重要性领域进步的关键驱动力,如能源生产,存储和分配,无线通信和量子技术。例如,太阳能电池板、固态电池、触摸屏、平板显示器和量子计算机原型的运行严重依赖于先进材料的性能和功能,这些材料的性能和功能可以精确到单个原子的尺度。进一步提高这些材料的性能,以及设计具有新功能的全新材料,需要详细了解宏观特性,例如携带电力,吸收和发射光以及存储化学能的能力,如何从元素组成和原子结构中产生每种化合物。在这种背景下,通过在超级计算机上求解量子力学基本方程来模拟材料行为已成为实验研究不可或缺的补充。今天,存在大量的高性能计算软件来研究和预测材料在最低能量状态或基态的性质。这些工具主要基于密度泛函理论,这是一种非常成功的概念范式,使我们能够找到整个材料量子力学薛定谔方程的近似但精确的解。虽然这些方法对于预测结构和能量性质(如热力学相图)是必不可少的,但它们不适合描述更高级的功能性质,如光物质相互作用,电场和磁场下的电荷输运,以及宏观量子现象,如超导性。目前的项目通过开发一个全面的软件生态系统来填补这一空白,以计算和预测材料的功能特性,超越目前密度泛函理论的可能性。该基金支持的网络基础设施将使先进功能材料在原子尺度上的合理设计成为可能,并将支持下一代能源,计算和量子技术材料的开发。该研究计划将与教育活动紧密结合,以促进不同社区的科学研究。为此,每年将为用户和开发人员组织网络研讨会、学校和黑客松。该项目的目的是创建一个可互操作的软件生态系统,使用多体场论方法在原子尺度上建模和设计材料。多体电子结构方法定义了准确性,可靠性和预测能力的黄金标准,但这些方法在学术界和工业界的广泛采用受到基础理论和算法的复杂性以及缺乏广泛的互操作性和共享数据标准的阻碍。该项目将EPW、BerkeleyGW和SternheimerGW三个软件包的互补优势扩展并结合到一个以用户为中心的容器化仿真实验室中,该实验室具有共享的数据格式和内置的兼容层,用于主要的密度泛函理论代码。这种网络基础设施促进了对先进材料中电子和晶格自由度之间相互作用的理解,并扩大了可以预测精度计算的属性范围,包括:有限温度准粒子能带结构;光吸收和发射光谱;激子,极化子及其耦合;超导性;载流子传输;和驱动量子系统。此外,这种网络基础设施将通过分发精心策划的、可重用的和可互操作的开源代码,并通过提供一个平台来开发和测试多体电子结构方法的新算法和软件,来加速未来的软件开发。拟议努力的核心是培训一个多样化、包容性、和具有全球竞争力的STEM劳动力,推动材料研究和网络基础设施发展。该奖项由高级网络基础设施办公室颁发,并得到NSF数学和物理科学理事会材料研究部的共同支持。该奖项反映了NSF的法定使命,并通过评估被认为值得支持使用基金会的知识价值和更广泛的影响审查标准。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Anharmonic lattice dynamics via the special displacement method
- DOI:10.1103/physrevb.108.035155
- 发表时间:2022-12
- 期刊:
- 影响因子:3.7
- 作者:M. Zacharias;G. Volonakis;F. Giustino;J. Even
- 通讯作者:M. Zacharias;G. Volonakis;F. Giustino;J. Even
Anharmonic electron-phonon coupling in ultrasoft and locally disordered perovskites
- DOI:10.1038/s41524-023-01089-2
- 发表时间:2023-02
- 期刊:
- 影响因子:9.7
- 作者:M. Zacharias;G. Volonakis;F. Giustino;J. Even
- 通讯作者:M. Zacharias;G. Volonakis;F. Giustino;J. Even
Anisotropic-strain-enhanced hole mobility in GaN by lattice matching to ZnGeN 2 and MgSiN 2
通过与 ZnGeN 2 和 MgSiN 2 晶格匹配实现 GaN 中各向异性应变增强的空穴迁移率
- DOI:10.1063/5.0092709
- 发表时间:2022
- 期刊:
- 影响因子:4
- 作者:Leveillee, Joshua;Poncé, Samuel;Adamski, Nicholas L.;Van de Walle, Chris G.;Giustino, Feliciano
- 通讯作者:Giustino, Feliciano
Ab initio self-consistent many-body theory of polarons at all couplings
- DOI:10.1103/physrevb.106.075119
- 发表时间:2022-08-09
- 期刊:
- 影响因子:3.7
- 作者:Lafuente-Bartolome, Jon;Lian, Chao;Giustino, Feliciano
- 通讯作者:Giustino, Feliciano
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Feliciano Giustino其他文献
Monolayer 1T-NbSe2 as a 2D-correlated magnetic insulator
- DOI:
DOI: 10.1126/sciadv.abi6339 - 发表时间:
2021 - 期刊:
- 影响因子:
- 作者:
Mengke Liu;Joshua Leveillee;Shuangzan Lu;Jia Yu;Hyunsue Kim;Cheng Tian;Youguo Shi;Keji Lai;Chendong Zhang;Feliciano Giustino;Chih-Kang Shih - 通讯作者:
Chih-Kang Shih
<span class="small-caps">SternheimerGW</span>: A program for calculating <math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1442" altimg="si24.svg" class="math"><mrow><mi>G</mi><mi>W</mi></mrow></math> quasiparticle band structures and spectral functions without unoccupied states
- DOI:
10.1016/j.cpc.2019.07.019 - 发表时间:
2020-02-01 - 期刊:
- 影响因子:
- 作者:
Martin Schlipf;Henry Lambert;Nourdine Zibouche;Feliciano Giustino - 通讯作者:
Feliciano Giustino
Robust supermoiré pattern in large-angle single-twist bilayers
大角度单扭曲双层膜中的稳健超级莫尔图案
- DOI:
10.1038/s41567-025-02914-9 - 发表时间:
2025-05-16 - 期刊:
- 影响因子:18.400
- 作者:
Yanxing Li;Chuqiao Shi;Fan Zhang;Xiaohui Liu;Yuan Xue;Viet-Anh Ha;Qiang Gao;Chengye Dong;Yu-Chuan Lin;Luke N. Holtzman;Nicolás Morales-Durán;Hyunsue Kim;Yi Jiang;Madisen Holbrook;James Hone;Katayun Barmak;Joshua A. Robinson;Xiaoqin Li;Feliciano Giustino;Eslam Khalaf;Yimo Han;Chih-Kang Shih - 通讯作者:
Chih-Kang Shih
Feliciano Giustino的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Feliciano Giustino', 18)}}的其他基金
Collaborative Research: DMREF: Quasi-Direct Semiconductors
合作研究:DMREF:准直接半导体
- 批准号:
2119555 - 财政年份:2021
- 资助金额:
$ 385.7万 - 项目类别:
Standard Grant
School on Electron-Phonon Physics from First Principles
从第一原理开始的电子声子物理学院
- 批准号:
2007638 - 财政年份:2020
- 资助金额:
$ 385.7万 - 项目类别:
Standard Grant
Rational design of solid-state semiconductor-sensitized solar cells: from materials modelling to device fabrication
固态半导体敏化太阳能电池的合理设计:从材料建模到器件制造
- 批准号:
EP/J009857/1 - 财政年份:2012
- 资助金额:
$ 385.7万 - 项目类别:
Research Grant
相似海外基金
An AI Powered Software Tool for Planning, Implementing and Monitoring Collaborative and Interoperable maritime Telecommunication Networks
人工智能驱动的软件工具,用于规划、实施和监控协作和可互操作的海上电信网络
- 批准号:
10104335 - 财政年份:2024
- 资助金额:
$ 385.7万 - 项目类别:
Launchpad
AUTOTRACT - Development of interoperable, low-cost, 'self-driving' software platform for tractor manufacturers
AUTOTRACT - 为拖拉机制造商开发可互操作、低成本的“自动驾驶”软件平台
- 批准号:
10057982 - 财政年份:2023
- 资助金额:
$ 385.7万 - 项目类别:
Collaborative R&D
Research on software contracts for highly interoperable software modules
高度互操作软件模块的软件契约研究
- 批准号:
20H00582 - 财政年份:2020
- 资助金额:
$ 385.7万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Interoperable Software Platform for Reproducible Research and Clinical Translation of MRI
用于 MRI 可重复研究和临床转化的可互操作软件平台
- 批准号:
10491708 - 财政年份:2019
- 资助金额:
$ 385.7万 - 项目类别:
Interoperable Software Platform for Reproducible Research and Clinical Translation of MRI
用于 MRI 可重复研究和临床转化的可互操作软件平台
- 批准号:
10677036 - 财政年份:2019
- 资助金额:
$ 385.7万 - 项目类别:
Interoperable Software Platform for Reproducible Research and Clinical Translation of MRI
用于 MRI 可重复研究和临床转化的可互操作软件平台
- 批准号:
10022302 - 财政年份:2019
- 资助金额:
$ 385.7万 - 项目类别:
Interoperable Software Platform for Reproducible Research and Clinical Translation of MRI
用于 MRI 可重复研究和临床转化的可互操作软件平台
- 批准号:
10265503 - 财政年份:2019
- 资助金额:
$ 385.7万 - 项目类别:
Interoperable Extension of the Inviwo Visualization Software
Inviwo 可视化软件的互操作扩展
- 批准号:
391107954 - 财政年份:2018
- 资助金额:
$ 385.7万 - 项目类别:
Research data and software (Scientific Library Services and Information Systems)
An Interoperable Rsource Framework for Software Agents
软件代理的可互操作资源框架
- 批准号:
268479-2003 - 财政年份:2004
- 资助金额:
$ 385.7万 - 项目类别:
Industrial Postgraduate Scholarships
An Interoperable Rsource Framework for Software Agents
软件代理的可互操作资源框架
- 批准号:
268479-2003 - 财政年份:2003
- 资助金额:
$ 385.7万 - 项目类别:
Industrial Postgraduate Scholarships