CAREER: Artificial Intelligence Planning with Realistic Preference Models

职业:利用现实偏好模型进行人工智能规划

基本信息

  • 批准号:
    0536375
  • 负责人:
  • 金额:
    $ 6.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-02-15 至 2007-01-31
  • 项目状态:
    已结题

项目摘要

This is the first year of funding of a 4-year continuing award. Preference models determine which one of several plans to prefer. It is important that planners use the same preference models as human decision makers because planners should make the same decisions as their human users, otherwise the planners are not of much use. The PI will investigate how to build planners that fit the preference models of human decision makers better than current planners, by combining constructive methods from artificial intelligence with more descriptive methods from utility theory in order to take advantage of the strengths of the two decision-making disciplines and to extend the applicability of Al planners. The PI will study optimal vs. good or near-optimal ("satisficing") planning with a variety of preference models. He win explore how to exploit the structure of complex sequential planning tasks to solve them efficiently for realistic preference models suggested by utility theory, with an emphasis on preference models in high-stakes decision situations. To this end, he will focus on representation changes that make use of existing planners from AI by transforming planning tasks with nonlinear utility functions into others that these planning methods can solve, and will study the errors that result for the original planning task when satisficing planning methods are used instead. The research will be performed in the context of managing environmental crisis situations, such as cleaning-up marine oil-spills.
这是为期4年的持续奖的第一年资助。偏好模型决定了几种方案中的哪一种。重要的是,规划者使用与人类决策者相同的偏好模型,因为规划者应该做出与人类用户相同的决定,否则规划者没有太大用处。PI将研究如何通过将人工智能的构造性方法与效用理论的更具描述性的方法相结合,建立比当前规划者更适合人类决策者偏好模型的规划者,以利用这两个决策学科的优势,并扩大AI规划者的适用性。PI将使用各种偏好模型研究最佳与良好或接近最佳(“满意”)的计划。他将探索如何利用复杂的顺序计划任务的结构来有效地解决效用理论提出的现实偏好模型,重点是高风险决策情况下的偏好模型。为此,他将专注于利用人工智能中现有规划者的表示变化,将具有非线性效用函数的计划任务转换为这些计划方法可以解决的其他任务,并将研究当使用令人满意的计划方法时,对原始计划任务造成的错误。这项研究将在管理环境危机情况的背景下进行,例如清理海洋石油泄漏。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sven Koenig其他文献

Optimal and Bounded-Suboptimal Multi-Agent Motion Planning
最优和有界次优多智能体运动规划
  • DOI:
    10.1609/socs.v10i1.18501
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Cohen;T. Uras;T. K. S. Kumar;Sven Koenig
  • 通讯作者:
    Sven Koenig
Speeding-Up Any-Angle Path-Planning on Grids
加速网格上的任意角度路径规划
Map Connectivity and Empirical Hardness of Grid-based Multi-Agent Pathfinding Problem
基于网格的多智能体寻路问题的地图连通性和经验难度
Identifying Hierarchies for Fast Optimal Search
识别快速最佳搜索的层次结构
Multi-objective Search via Lazy and Efficient Dominance Checks
通过惰性和高效的优势检查进行多目标搜索
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Carlos Hern´andez;William Yeoh;Jorge A. Baier;Ariel Felner;Oren Salzman;Han Zhang;Shao;Sven Koenig
  • 通讯作者:
    Sven Koenig

Sven Koenig的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sven Koenig', 18)}}的其他基金

NSF-BSF: RI: Small: Efficient Bi- and Multi-Objective Search Algorithms
NSF-BSF:RI:小型:高效的双目标和多目标搜索算法
  • 批准号:
    2121028
  • 财政年份:
    2021
  • 资助金额:
    $ 6.71万
  • 项目类别:
    Standard Grant
NSF-BSF:RI:Small:Collaborative Research:Next-Generation Multi-Agent Path Finding Algorithms
NSF-BSF:RI:小型:协作研究:下一代多智能体路径查找算法
  • 批准号:
    1817189
  • 财政年份:
    2018
  • 资助金额:
    $ 6.71万
  • 项目类别:
    Standard Grant
CPS: Small: Novel Algorithmic Techniques for Drone Flight Planning on a Large Scale
CPS:小型:大规模无人机飞行规划的新颖算法技术
  • 批准号:
    1837779
  • 财政年份:
    2018
  • 资助金额:
    $ 6.71万
  • 项目类别:
    Standard Grant
S&AS: FND: Long-Term Planning and Robust Plan Execution for Multi-Robot Systems
S
  • 批准号:
    1724392
  • 财政年份:
    2017
  • 资助金额:
    $ 6.71万
  • 项目类别:
    Standard Grant
Support for the ICAPS-15 Doctoral Consortium
支持 ICAPS-15 博士联盟
  • 批准号:
    1519252
  • 财政年份:
    2015
  • 资助金额:
    $ 6.71万
  • 项目类别:
    Standard Grant
RI: Medium: Collaborative Research: Experience-Based Planning: A Framework for Lifelong Planning
RI:媒介:协作研究:基于经验的规划:终身规划框架
  • 批准号:
    1409987
  • 财政年份:
    2014
  • 资助金额:
    $ 6.71万
  • 项目类别:
    Standard Grant
RI: Small: Any-Angle Search
RI:小:任意角度搜索
  • 批准号:
    1319966
  • 财政年份:
    2013
  • 资助金额:
    $ 6.71万
  • 项目类别:
    Standard Grant
Incremental Heuristic Search
增量启发式搜索
  • 批准号:
    0350584
  • 财政年份:
    2003
  • 资助金额:
    $ 6.71万
  • 项目类别:
    Continuing Grant
CAREER: Artificial Intelligence Planning with Realistic Preference Models
职业:利用现实偏好模型进行人工智能规划
  • 批准号:
    9984827
  • 财政年份:
    2000
  • 资助金额:
    $ 6.71万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: How Collaboration and Competition Influence Research in the Emerging Field of Artificial Intelligence
职业:合作和竞争如何影响人工智能新兴领域的研究
  • 批准号:
    2337564
  • 财政年份:
    2024
  • 资助金额:
    $ 6.71万
  • 项目类别:
    Continuing Grant
CAREER: An Artificial Intelligence (AI)-enabled Analytics Perspective for Developing Proactive Cyber Threat Intelligence
职业:基于人工智能 (AI) 的分析视角,用于开发主动网络威胁情报
  • 批准号:
    2338479
  • 财政年份:
    2024
  • 资助金额:
    $ 6.71万
  • 项目类别:
    Continuing Grant
CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
  • 批准号:
    2236926
  • 财政年份:
    2023
  • 资助金额:
    $ 6.71万
  • 项目类别:
    Continuing Grant
CAREER: Harnessing Heterogeneous Sources of Data and Artificial Intelligence for Informed Flood Management
职业:利用异构数据源和人工智能进行明智的洪水管理
  • 批准号:
    2238639
  • 财政年份:
    2023
  • 资助金额:
    $ 6.71万
  • 项目类别:
    Standard Grant
CAREER: Rethinking PIM-Assisted GPU Computing for Multi-Tenant Artificial Intelligence
职业:重新思考用于多租户人工智能的 PIM 辅助 GPU 计算
  • 批准号:
    2239638
  • 财政年份:
    2023
  • 资助金额:
    $ 6.71万
  • 项目类别:
    Continuing Grant
CAREER: Artificial Intelligence for Polarimetric Radar Remote Sensing of Precipitation
职业:用于降水偏振雷达遥感的人工智能
  • 批准号:
    2239880
  • 财政年份:
    2023
  • 资助金额:
    $ 6.71万
  • 项目类别:
    Continuing Grant
CAREER: Achieving Explainable Artificial Intelligence (AI) through Human-AI Interaction
职业:通过人机交互实现可解释的人工智能 (AI)
  • 批准号:
    2237562
  • 财政年份:
    2023
  • 资助金额:
    $ 6.71万
  • 项目类别:
    Standard Grant
CAREER: Emotion Artificial Intelligence in the Future of Work: A Privacy and Relational Ethics Lens
职业:未来工作中的情感人工智能:隐私和关系伦理视角
  • 批准号:
    2236674
  • 财政年份:
    2023
  • 资助金额:
    $ 6.71万
  • 项目类别:
    Continuing Grant
CAREER: DURAIS : A Platform for Co-Designing and Understanding the Roles of Conversational Artificial Intelligence Systems on Caregiving
职业:DURAIS:共同设计和理解对话式人工智能系统在护理方面的作用的平台
  • 批准号:
    2144880
  • 财政年份:
    2022
  • 资助金额:
    $ 6.71万
  • 项目类别:
    Continuing Grant
STTR Phase I: Exploring Artificial Intelligence (AI)-Enabled Skills Data For Education-to-Employment Transitions and Career Support
STTR 第一阶段:探索人工智能 (AI) 支持的技能数据,以实现从教育到就业的过渡和职业支持
  • 批准号:
    2112276
  • 财政年份:
    2022
  • 资助金额:
    $ 6.71万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了