S&AS: FND: Long-Term Planning and Robust Plan Execution for Multi-Robot Systems
S
基本信息
- 批准号:1724392
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
How can multi-robot teams maneuver in tight and cluttered environments when "no plan survives contact" with reality? Traditional approaches plan for idealized situations and must patch up maneuvers when sensors or actuators are imprecise, making them neither robust nor safe. This project, a collaboration of PIs from artificial intelligence and robotics, will investigate fundamental research to capture and use timing and uncertainty constraints in large robot navigation and coordination problems. The target applications are just-in-time manufacturing and automated warehousing, but the results will extend beyond to many applications of smart and autonomous systems that need reliable and safe planning. The project will study Multi-Agent Path Finding (MAPF), which is an NP-hard planning problem that belongs to a class of important planning problems, namely multi-agent navigation problems with temporal and spatial constraints. The research will relax simplifying assumptions typically made by MAPF solvers, namely that plan execution is perfect and stops once all robots have reached their goal locations. Many AI planning methods that have been developed are not used on robots, since planning/scheduling uses idealized models of the environment and plan execution is never perfect, and there is often insufficient time for re-planning if execution deviates from the plan. This project will develop well-founded planning and plan-execution methods, based on probabilistic and temporal reasoning, that fuse ideas from robotics and artificial intelligence. In particular, the PIs will combine advances in planning algorithms from the AI community, namely Simple Temporal Networks (STN), and adapt them to the robotics domain by adding timely execution constraints, as well as sensor, actuator, and model uncertainties. They will make project results (such as papers, videos and code) available on their web pages, present tutorials on their research results to the artificial intelligence and robotics research communities, develop teaching material for multi-robot planning, and integrate undergraduate students into their research activities.
多机器人团队如何在紧凑和混乱的环境中进行机动?传统的方法是为理想情况做计划,当传感器或执行器不精确时,必须修补机动,这使得它们既不健壮也不安全。该项目是人工智能和机器人技术pi的合作,将调查基础研究,以捕获和使用大型机器人导航和协调问题中的时间和不确定性约束。目标应用是即时制造和自动化仓储,但结果将扩展到需要可靠和安全规划的智能和自主系统的许多应用。该项目将研究Multi-Agent Path Finding (MAPF),这是一个NP-hard规划问题,属于一类重要的规划问题,即具有时空约束的多智能体导航问题。该研究将简化MAPF求解器通常做出的假设,即计划执行是完美的,一旦所有机器人到达目标位置就会停止。许多已经开发的人工智能规划方法并没有用于机器人,因为规划/调度使用的是理想化的环境模型,计划的执行从来都不是完美的,如果执行偏离计划,通常没有足够的时间来重新规划。该项目将基于概率和时间推理,融合机器人和人工智能的思想,开发有充分根据的规划和计划执行方法。特别是,pi将结合人工智能社区在规划算法方面的进展,即简单时态网络(STN),并通过添加及时执行约束以及传感器、执行器和模型不确定性,使其适应机器人领域。他们将在自己的网页上发布项目成果(如论文、视频和代码),向人工智能和机器人研究社区提供有关其研究成果的教程,开发多机器人规划的教材,并将本科生纳入他们的研究活动。
项目成果
期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Summary: Distributed Task Assignment and Path Planning with Limited Communication for Robot Teams
摘要:机器人团队沟通有限的分布式任务分配和路径规划
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Albani, Dario;Hönig, Wolfgang;Ayanian, Nora;Nardi, Daniele;Trianni, Vito
- 通讯作者:Trianni, Vito
Toward a String-Pulling Approach to Path Smoothing on Grid Graphs
网格图路径平滑的拉弦方法
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Han, J.;Uras, T.;Koenig, S.
- 通讯作者:Koenig, S.
Overview: A Hierarchical Framework for Plan Generation and Execution in Multirobot Systems
- DOI:10.1109/mis.2017.4531217
- 发表时间:2017-11
- 期刊:
- 影响因子:6.4
- 作者:Hang Ma;W. Hönig;L. Cohen;T. Uras;Hong Xu;T. K. S. Kumar;Nora Ayanian;Sven Koenig
- 通讯作者:Hang Ma;W. Hönig;L. Cohen;T. Uras;Hong Xu;T. K. S. Kumar;Nora Ayanian;Sven Koenig
Quadratic Reformulation of Nonlinear Pseudo-Boolean Functions via the Constraint Composite Graph
通过约束复合图对非线性伪布尔函数进行二次重构
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Yip, K.;Xu, H.;Koenig, S.;Kumar, S.
- 通讯作者:Kumar, S.
Lifelong Multi-Agent Path Finding in Large-Scale Warehouses
- DOI:10.1609/aaai.v35i13.17344
- 发表时间:2020-05
- 期刊:
- 影响因子:0
- 作者:Jiaoyang Li;Andrew Tinka;Scott Kiesel;Joseph W. Durham;T. K. S. Kumar;Sven Koenig
- 通讯作者:Jiaoyang Li;Andrew Tinka;Scott Kiesel;Joseph W. Durham;T. K. S. Kumar;Sven Koenig
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sven Koenig其他文献
Optimal and Bounded-Suboptimal Multi-Agent Motion Planning
最优和有界次优多智能体运动规划
- DOI:
10.1609/socs.v10i1.18501 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
L. Cohen;T. Uras;T. K. S. Kumar;Sven Koenig - 通讯作者:
Sven Koenig
Speeding-Up Any-Angle Path-Planning on Grids
加速网格上的任意角度路径规划
- DOI:
10.1609/icaps.v25i1.13724 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
T. Uras;Sven Koenig - 通讯作者:
Sven Koenig
Map Connectivity and Empirical Hardness of Grid-based Multi-Agent Pathfinding Problem
基于网格的多智能体寻路问题的地图连通性和经验难度
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
J. Ren;Eric Ewing;T. K. S. Kumar;Sven Koenig;Nora Ayanian - 通讯作者:
Nora Ayanian
Identifying Hierarchies for Fast Optimal Search
识别快速最佳搜索的层次结构
- DOI:
10.1609/socs.v5i1.18307 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
T. Uras;Sven Koenig - 通讯作者:
Sven Koenig
Multi-objective Search via Lazy and Efficient Dominance Checks
通过惰性和高效的优势检查进行多目标搜索
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Carlos Hern´andez;William Yeoh;Jorge A. Baier;Ariel Felner;Oren Salzman;Han Zhang;Shao;Sven Koenig - 通讯作者:
Sven Koenig
Sven Koenig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sven Koenig', 18)}}的其他基金
NSF-BSF: RI: Small: Efficient Bi- and Multi-Objective Search Algorithms
NSF-BSF:RI:小型:高效的双目标和多目标搜索算法
- 批准号:
2121028 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
NSF-BSF:RI:Small:Collaborative Research:Next-Generation Multi-Agent Path Finding Algorithms
NSF-BSF:RI:小型:协作研究:下一代多智能体路径查找算法
- 批准号:
1817189 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CPS: Small: Novel Algorithmic Techniques for Drone Flight Planning on a Large Scale
CPS:小型:大规模无人机飞行规划的新颖算法技术
- 批准号:
1837779 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Support for the ICAPS-15 Doctoral Consortium
支持 ICAPS-15 博士联盟
- 批准号:
1519252 - 财政年份:2015
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
RI: Medium: Collaborative Research: Experience-Based Planning: A Framework for Lifelong Planning
RI:媒介:协作研究:基于经验的规划:终身规划框架
- 批准号:
1409987 - 财政年份:2014
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CAREER: Artificial Intelligence Planning with Realistic Preference Models
职业:利用现实偏好模型进行人工智能规划
- 批准号:
0536375 - 财政年份:2005
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
CAREER: Artificial Intelligence Planning with Realistic Preference Models
职业:利用现实偏好模型进行人工智能规划
- 批准号:
9984827 - 财政年份:2000
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
相似国自然基金
Novosphingobium sp. FND-3降解呋喃丹的分子机制研究
- 批准号:31670112
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Movement perception in Functional Neurological Disorder (FND)
功能性神经疾病 (FND) 的运动感知
- 批准号:
MR/Y004000/1 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Research Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
- 批准号:
2348839 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
S&AS: FND: COLLAB: Planning and Control of Heterogeneous Robot Teams for Ocean Monitoring
S
- 批准号:
2311967 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
- 批准号:
2024882 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
- 批准号:
2024646 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
NRI: FND: Foundations for Physical Co-Manipulation with Mixed Teams of Humans and Soft Robots
NRI:FND:人类和软机器人混合团队物理协同操作的基础
- 批准号:
2024792 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
NRI: FND: Foundations for Physical Co-Manipulation with Mixed Teams of Humans and Soft Robots
NRI:FND:人类和软机器人混合团队物理协同操作的基础
- 批准号:
2024670 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
NRI: FND: Natural Power Transmission through Unconstrained Fluids for Robotic Manipulation
NRI:FND:通过不受约束的流体进行自然动力传输,用于机器人操作
- 批准号:
2024409 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
NRI: FND: Multi-Manipulator Extensible Robotic Platforms
NRI:FND:多机械手可扩展机器人平台
- 批准号:
2024435 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: NRI: FND: Flying Swarm for Safe Human Interaction in Unstructured Environments
合作研究:NRI:FND:用于非结构化环境中安全人类互动的飞群
- 批准号:
2024615 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant