Nonlinear Model Order Reduction for Behavioral Models of Emerging Technologies
新兴技术行为模型的非线性模型降阶
基本信息
- 批准号:0541150
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-05-01 至 2010-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACT0541150Steven LevitanU of PittsburghPhysical phenomena in nature are inherently nonlinear. However, most techniques used by engineers to model and analyze these complex interactions are based on linear approximations. Until recently, these approximations were acceptable for most engineering applications. However, we are now forced to rethink this approach due the fact that emerging micro- and nano- technologies have lead to systems that are complex, with many degrees of freedom, and highly nonlinear behavior. For example, consider the design of lab-on-a-chip type systems, which use micromechanics and optoelectronics to manipulate and analyze the behavior of complex fluids. These systems could revolutionize the way that bio-chemical synthesis and analysis are performed. However, they are inherently difficult to design because they involve interacting electronic, optoelectronic, fluidic, thermal and mechanical sub-systems. On the one hand, such multi-technology systems can only be accurately modeled with formulations that have many degrees of freedom and also capture the nonlinear characteristics of the underlying physics; and these models are necessarily computationally expensive. On the other hand, to effectively design such systems, it is necessary to simulate and analyze their behavior over a broad range of stimuli in a realistic operating environment. This requires models that can be simulated efficiently in order to explore the range of behaviors that they exhibit, in an engineering product design flow.Consequently, it is essential to have a methodology to reduce the complexity of nonlinear systems of high dimensionality, without recourse to linear approximation, since only such a solution will give an accurate description for ever increasingly complex micro- and nano- multi-technology systems. To address these needs, this research will develop a methodology for extraction of nonlinear behavioral models.The results of this work will lead to a general methodology for nonlinear model order reduction. Such methodologies are essential for reducing design costs and increasing both quality and reliability of multi-technology micro systems. Having accurate compact models that can be efficiently simulated will enable the robust design of complex heterogeneous systems that span multiple energy domains. This methodology will be broadly applicable not only to electronic systems design, but also to emerging technologies at the confluence of engineering and physical sciences, such as nanotechnology based sensors, smart materials and systems biology.
自然界中的物理现象本质上是非线性的。 然而,工程师用来建模和分析这些复杂相互作用的大多数技术都是基于线性近似。直到最近,这些近似值对于大多数工程应用都是可以接受的。然而,我们现在被迫重新考虑这种方法,因为新兴的微米和纳米技术已经导致系统变得复杂,具有许多自由度和高度非线性行为。 例如,考虑芯片实验室类型系统的设计,其使用微机械学和光电子学来操纵和分析复杂流体的行为。 这些系统可以彻底改变生物化学合成和分析的方式。 然而,它们固有地难以设计,因为它们涉及相互作用的电子、光电、流体、热和机械子系统。一方面,这种多技术系统只能用具有许多自由度的公式精确建模,并且还捕获底层物理的非线性特征;并且这些模型在计算上必然是昂贵的。 另一方面,为了有效地设计这样的系统,有必要在现实的操作环境中模拟和分析它们在广泛的刺激下的行为。 这就需要能够有效模拟的模型,以便在工程产品设计流程中探索它们所表现出的行为范围。因此,必须有一种方法来降低高维非线性系统的复杂性,而不求助于线性近似,因为只有这样的解决方案才能准确描述日益复杂的微纳米多技术系统。 为了满足这些需求,本研究将发展一种非线性行为模型的提取方法,并将为非线性模型降阶提供一种通用的方法。这些方法对于降低多技术微系统的设计成本、提高其质量和可靠性至关重要。拥有可以有效模拟的精确紧凑模型将使跨越多个能源领域的复杂异构系统的鲁棒设计成为可能。这种方法不仅广泛适用于电子系统设计,而且适用于工程和物理科学融合的新兴技术,如基于纳米技术的传感器,智能材料和系统生物学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Levitan其他文献
Theoretical decomposition of neuronal networks
神经元网络的理论分解
- DOI:
- 发表时间:
1991 - 期刊:
- 影响因子:0
- 作者:
R. Sclabassi;D. Krieger;Jackie Solomon;Joseph Samosky;Steven Levitan;T. Berger - 通讯作者:
T. Berger
Modeling of neuronal networks through decomposition
通过分解对神经网络进行建模
- DOI:
- 发表时间:
1989 - 期刊:
- 影响因子:0
- 作者:
R. Sclabassi;Joseph Samosky;D. Krieger;Jackie Solomon;Steven Levitan;T. Berger - 通讯作者:
T. Berger
Steven Levitan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Levitan', 18)}}的其他基金
Behavioral Modeling of MEMS Sensors for System Level Design
用于系统级设计的 MEMS 传感器行为建模
- 批准号:
0306325 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Continuing Grant
Design Automation Tools for Micro-Scale Mixed Technology Systems
用于微型混合技术系统的设计自动化工具
- 批准号:
9988319 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Continuing Grant
Computer Aided Design and Simulation of Free Space Optoelectronic Information Processing Systems
自由空间光电信息处理系统的计算机辅助设计与仿真
- 批准号:
9616879 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
Computer Aided Design of Electro-Optical Information Processing Systems
电光信息处理系统的计算机辅助设计
- 批准号:
9421777 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Standard Grant
Distribution of VLSI Design Software for Education and Research
分发用于教育和研究的 VLSI 设计软件
- 批准号:
9101656 - 财政年份:1991
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
基于术中实时影像的SAM(Segment anything model)开发AI指导房间隔穿刺位置决策的增强现实模型
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
- 批准号:81771933
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
基于Multilevel Model的雷公藤多苷致育龄女性闭经预测模型研究
- 批准号:81503449
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
基于非齐性 Makov model 建立病证结合的绝经后骨质疏松症早期风险评估模型
- 批准号:30873339
- 批准年份:2008
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
Model order reduction for fast phase-field fracture simulations
快速相场断裂模拟的模型降阶
- 批准号:
EP/Y002474/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Development of cluster-based reduced-order model for optimal feedback control of dynamic stall flow
开发基于集群的动态失速流最优反馈控制降阶模型
- 批准号:
22KJ0183 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Numerical Simulation of Hypersonic Turbulent Flow by Spatiotemporal Multi-Scale Reduced Order Model
时空多尺度降阶模型高超声速湍流数值模拟
- 批准号:
23KJ0127 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Taming complexity in computational electromagnetism: a model order reduction approach
控制计算电磁学的复杂性:模型降阶方法
- 批准号:
RGPIN-2019-05060 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Model Membrane Structure, Molecular Order, Fluctuations and Dynamics
模拟膜结构、分子顺序、波动和动力学
- 批准号:
RGPIN-2016-03822 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
TASK ORDER B-15: Model Development and Medical Countermeasure Evaluation
任务令 B-15:模型开发和医疗对策评估
- 批准号:
10914394 - 财政年份:2022
- 资助金额:
-- - 项目类别:
STTR Phase I: Feasibility Study of a Reduced Order Model for Calculating Fractional Flow Reserve (FFR) Using Angiographic Data
STTR 第一阶段:使用血管造影数据计算血流储备分数 (FFR) 的降阶模型的可行性研究
- 批准号:
2151555 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Protein Footprinting Coupled to Mass Spectrometry for the Study of Protein Higher Order Structure in Complex Model Systems
蛋白质足迹与质谱联用用于复杂模型系统中蛋白质高阶结构的研究
- 批准号:
10707250 - 财政年份:2022
- 资助金额:
-- - 项目类别:
TASK ORDER B-15: Model Development and Medical Countermeasure Evaluation
任务令 B-15:模型开发和医疗对策评估
- 批准号:
10788109 - 财政年份:2022
- 资助金额:
-- - 项目类别:
TASK ORDER B-15: Model Development and Medical Countermeasure Evaluation
任务令 B-15:模型开发和医疗对策评估
- 批准号:
10933175 - 财政年份:2022
- 资助金额:
-- - 项目类别: