Taming complexity in computational electromagnetism: a model order reduction approach
控制计算电磁学的复杂性:模型降阶方法
基本信息
- 批准号:RGPIN-2019-05060
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Electromagnetic phenomena play a critical role inside the integrated circuits (ICs) and antennas that empower many electronic systems around us, including smartphones, computers, and data centers. Behind the scenes, electromagnetism also plays a crucial role in emerging technologies such as the Internet of Things (IoT) and Artificial Intelligence (AI). It is estimated that, by 2020, 20 billion IoT devices will be connected to the Internet. Electromagnetic waves, and significant advancements in antenna technology, will be the only way to connect the myriad of future IoT devices to the Internet, due to the prohibitive cost of terrestrial infrastructure. Metasurfaces are a new type of antennas which is ideally suited to respond to soaring IoT needs. Unfortunately, metasurfaces are extremely complex. Since no existing electromagnetic simulator can handle their complexity, engineers are currently missing one of the most critical tools for metasurface design. Similar challenges are faced by microelectronic companies such as AMD, which extensively rely on electromagnetic simulators to design new ICs, including the hardware accelerators of neural networks that are increasingly needed by advanced AI applications. The significant gap between what electromagnetic solvers can do and what designers need is a major issue for both industry and academia. The proposed research aims to fill this gap by laying down the theoretical and algorithmic foundations of an electromagnetic solver with superior scalability. We propose to investigate an innovative approach based on the concept of model order reduction. While model order reduction is well established for circuit simulation, it has received limited attention in computational electromagnetism, despite a clear need. We propose to develop the first systematic techniques to create compact, reduced-complexity models of the electromagnetic behavior of complex objects, such as the unit cell of a metasurface. The proposed models will be compatible with mainstream simulators based on the method of moments, allowing designers to analyze very large layouts in reasonable time. Leveraging the proposed developments and parallel computing, we will create an electromagnetic solver with unprecedented scalability, capable of handling an entire metasurface antenna. These developments will greatly facilitate the design of new metasurface antennas and ICs, including those required by upcoming IoT and AI applications. The proposed developments will be immediately translated to real design workflows, in collaboration with leading companies (AMD, Thales) and scientists (Profs. Eleftheriades and Hum). The proposed research will involve nine students who will receive comprehensive training of the highest quality, with access to world-class industrial partners, facilities and forefront technologies. Overall, this program is expected to result in nine graduates with a unique skillset, in high demand by industry and academia.
电磁现象在集成电路(IC)和天线中发挥着关键作用,这些电路和天线为我们周围的许多电子系统提供支持,包括智能手机,计算机和数据中心。在幕后,电磁学在物联网(IoT)和人工智能(AI)等新兴技术中也发挥着至关重要的作用。据估计,到2020年,将有200亿台物联网设备连接到互联网。电磁波和天线技术的重大进步将是将无数未来物联网设备连接到互联网的唯一途径,因为地面基础设施的成本过高。Metasurfaces是一种新型天线,非常适合应对不断飙升的物联网需求。不幸的是,元表面非常复杂。由于没有现有的电磁模拟器可以处理它们的复杂性,工程师们目前缺少一个最关键的超表面设计工具。AMD等微电子公司也面临着类似的挑战,它们广泛依赖电磁模拟器来设计新的IC,包括高级AI应用越来越需要的神经网络硬件加速器。 电磁解算器可以做什么和设计师需要什么之间的巨大差距是工业界和学术界的一个主要问题。拟议的研究旨在填补这一空白奠定了理论和算法基础的电磁求解器具有上级可扩展性。我们提出了一种基于模型降阶概念的创新方法。虽然模型降阶在电路仿真中得到了很好的应用,但在计算电磁学中却受到了有限的关注,尽管有明确的需求。我们建议开发第一个系统的技术来创建紧凑的,降低复杂性的复杂对象的电磁行为的模型,如元表面的单位细胞。所提出的模型将与基于矩量法的主流仿真器兼容,允许设计人员在合理的时间内分析非常大的布局。利用拟议的发展和并行计算,我们将创建一个电磁解算器,具有前所未有的可扩展性,能够处理整个元表面天线。这些发展将极大地促进新的元表面天线和IC的设计,包括即将到来的物联网和人工智能应用所需的天线和IC。拟议的开发将立即转化为真实的的设计工作流程,与领先的公司(AMD,泰雷兹)和科学家(教授。Eleftheriades and Eyellow).拟议的研究将涉及9名学生,他们将接受最高质量的综合培训,并获得世界一流的工业合作伙伴,设施和前沿技术。总体而言,该计划预计将导致九名毕业生具有独特的技能,在工业和学术界的高需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Triverio, Piero其他文献
A Vector Fitting Approach for the Automated Estimation of Lumped Boundary Conditions of 1D Circulation Models.
一种矢量拟合方法,用于自动估计1D循环模型的边界条件。
- DOI:
10.1007/s13239-023-00669-z - 发表时间:
2023-08 - 期刊:
- 影响因子:1.8
- 作者:
Fevola, Elisa;Bradde, Tommaso;Triverio, Piero;Grivet-Talocia, Stefano - 通讯作者:
Grivet-Talocia, Stefano
An optimal control approach to determine resistance-type boundary conditions from in-vivo data for cardiovascular simulations.
- DOI:
10.1002/cnm.3516 - 发表时间:
2021-10 - 期刊:
- 影响因子:2.1
- 作者:
Fevola, Elisa;Ballarin, Francesco;Jimenez-Juan, Laura;Fremes, Stephen;Grivet-Talocia, Stefano;Rozza, Gianluigi;Triverio, Piero - 通讯作者:
Triverio, Piero
Triverio, Piero的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Triverio, Piero', 18)}}的其他基金
Computational Electromagnetics
计算电磁学
- 批准号:
CRC-2017-00255 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Canada Research Chairs
Taming complexity in computational electromagnetism: a model order reduction approach
控制计算电磁学的复杂性:模型降阶方法
- 批准号:
RGPIN-2019-05060 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Computational Electromagnetics
计算电磁学
- 批准号:
CRC-2017-00255 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Canada Research Chairs
Taming complexity in computational electromagnetism: a model order reduction approach
控制计算电磁学的复杂性:模型降阶方法
- 批准号:
RGPIN-2019-05060 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Computational Electromagnetics
计算电磁学
- 批准号:
CRC-2017-00255 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Canada Research Chairs
A scalable electromagnetic solver for interconnect networks in 3D integrated circuits
用于 3D 集成电路互连网络的可扩展电磁求解器
- 批准号:
524917-2018 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Collaborative Research and Development Grants
Taming complexity in computational electromagnetism: a model order reduction approach
控制计算电磁学的复杂性:模型降阶方法
- 批准号:
RGPIN-2019-05060 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Computational Electromagnetics
计算电磁学
- 批准号:
CRC-2017-00255 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Canada Research Chairs
Computational Electromagnetics
计算电磁学
- 批准号:
CRC-2017-00255 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Canada Research Chairs
Advanced Techniques for the Modeling of Electrical Interconnects
电气互连建模的先进技术
- 批准号:
418452-2013 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Travel: NSF Student Travel Grant for 2023 Conference on Computational Complexity
旅行:2023 年计算复杂性会议 NSF 学生旅行补助金
- 批准号:
2326701 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
FET: Small: A triangle of quantum mathematics, computational complexity, and geometry
FET:小:量子数学、计算复杂性和几何的三角关系
- 批准号:
2317280 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Computational Complexity and Algebraic Combinatorics
合作研究:AF:小:计算复杂性和代数组合
- 批准号:
2302174 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Representation Theory Meets Computational Algebra and Complexity Theory
表示论遇见计算代数和复杂性理论
- 批准号:
2302375 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Computational Complexity and Algebraic Combinatorics
合作研究:AF:小:计算复杂性和代数组合
- 批准号:
2302173 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Computational Complexity of Geometric and Combinatorial Problems
几何和组合问题的计算复杂性
- 批准号:
RGPIN-2016-04274 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Continuous longitudinal atlas construction for the study of brain development
用于大脑发育研究的连续纵向图谱构建
- 批准号:
10683307 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别: