Data-Driven Appearance Transfer for Realistic Image Synthesis

用于真实图像合成的数据驱动的外观传输

基本信息

  • 批准号:
    0541230
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-02-01 至 2009-08-31
  • 项目状态:
    已结题

项目摘要

Realistic image synthesis is a central goal of computer graphics. Major recent advances have allowed researchers to model a wide spectrum of complicated visual phenomena with a very high degree of realism. Yet, even the best computer-generated feature films are a far cry from what one might consider "real". Curiously, the problem is generally not with computer graphics being unable to model the physics of the everyday visual world -- the problem is with the world itself! It's just too complex, too noisy, too rich and vivid to be recreated from scratch by even the most skilled and patient artist.One solution is to use image-based methods and directly capture visual appearance of everything in the world -- if only it was feasible. Instead, this research effort centers on transferring appearance from a large database of stored visual data into a novel scene. The reason is that while capturing details of a particular scene is very expensive and time-consuming, obtaining similar information from some relevant scene is relatively easy. There is a tremendous amount of visual data that is already captured and available - thousands of webcams all over the world, millions of photographs placed on the Internet, depicting anything from sandstorms in Sahara to the glaciers in Alaska. And more data is being added every day. Our research is developing a unified approach for appearance transfer. Two broad scenarios are considered: transfer in image stacks (e.g. webcams) and single image transfer. In both cases, the major research issues involve: (1) grouping images and image stacks into regions with coherent material/geometry properties, (2) determining correspondence between various groups in the scene and the database, (3) and finally transferring the correct appearance from the database by combining it with the large-scale structure of the input scene.
逼真的图像合成是计算机图形学的中心目标。最近的重大进展使研究人员能够以非常高的真实感来模拟各种复杂的视觉现象。然而,即使是最好的电脑制作的故事片也与人们所认为的“真实”相差甚远。奇怪的是,问题通常不在于计算机图形无法模拟日常视觉世界的物理——问题在于世界本身!它太复杂、太嘈杂、太丰富、太生动,即使是最熟练、最有耐心的艺术家也无法从头开始重建。一种解决方案是使用基于图像的方法,直接捕捉世界上所有事物的视觉外观——如果可行的话。相反,这项研究的重点是将存储视觉数据的大型数据库中的外观转移到一个新的场景中。原因是,虽然捕获特定场景的细节非常昂贵和耗时,但从某些相关场景中获取类似信息相对容易。有大量的视觉数据已经被捕获并可用——世界各地的数千个网络摄像头,互联网上的数百万张照片,描绘了从撒哈拉沙漠的沙尘暴到阿拉斯加的冰川的任何东西。每天都有更多的数据被添加进来。我们的研究是开发一种统一的外观转移方法。考虑了两种广泛的场景:图像堆栈传输(例如网络摄像头)和单个图像传输。在这两种情况下,主要的研究问题涉及:(1)将图像和图像堆栈分组到具有一致的材料/几何属性的区域中;(2)确定场景中各个组与数据库之间的对应关系;(3)最后结合输入场景的大规模结构从数据库中转移正确的外观。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexei Efros其他文献

Alexei Efros的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexei Efros', 18)}}的其他基金

BIGDATA: F: Collaborative Research: From Visual Data to Visual Understanding
BIGDATA:F:协作研究:从视觉数据到视觉理解
  • 批准号:
    1633310
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Modeling rich inter-image relationships in big visual collections
在大型视觉集合中建模丰富的图像间关系
  • 批准号:
    1514512
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Geometrically Coherent Image Interpretation
职业:几何相干图像解释
  • 批准号:
    0546547
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
NIRT: Nanoscale Metalic Photonic Crystals; Fabrication, Physical Properties, and Applications
NIRT:纳米级金属光子晶体;
  • 批准号:
    0102964
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Study of Inhomogeneous State of Two-Dimensional Electron Quantum Liquid
二维电子量子液体非均匀态研究
  • 批准号:
    9116748
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目

相似海外基金

Priceworx Ultimate+: A world-first AI-driven material cost forecaster for construction project management.
Priceworx Ultimate:世界上第一个用于建筑项目管理的人工智能驱动的材料成本预测器。
  • 批准号:
    10099966
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Facilitating circular construction practices in the UK: A data driven online marketplace for waste building materials
促进英国的循环建筑实践:数据驱动的废弃建筑材料在线市场
  • 批准号:
    10113920
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    SME Support
N2Vision+: A robot-enabled, data-driven machine vision tool for nitrogen diagnosis of arable soils
N2Vision:一种由机器人驱动、数据驱动的机器视觉工具,用于耕地土壤的氮诊断
  • 批准号:
    10091423
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Structure-guided optimisation of light-driven microalgae cell factories
光驱动微藻细胞工厂的结构引导优化
  • 批准号:
    DP240101727
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Data Driven Discovery of New Catalysts for Asymmetric Synthesis
数据驱动的不对称合成新催化剂的发现
  • 批准号:
    DP240100102
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Maintaining Human Expertise in an AI-driven World
在人工智能驱动的世界中保持人类的专业知识
  • 批准号:
    DE240100269
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
PIDD-MSK: Physics-Informed Data-Driven Musculoskeletal Modelling
PIDD-MSK:物理信息数据驱动的肌肉骨骼建模
  • 批准号:
    EP/Y027930/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
EDIBLES: Environmentally Driven Body-Scale Electromagnetic Co-Sensing
食用:环境驱动的人体规模电磁协同感应
  • 批准号:
    EP/Y002008/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Understanding the Impact of Outdoor Science and Environmental Learning Experiences Through Community-Driven Outcomes
通过社区驱动的成果了解户外科学和环境学习体验的影响
  • 批准号:
    2314075
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: CAS: Organic Photochemistry for Light-Driven CO2 Capture and Release
职业:CAS:光驱动二氧化碳捕获和释放的有机光化学
  • 批准号:
    2338206
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了