Modeling rich inter-image relationships in big visual collections
在大型视觉集合中建模丰富的图像间关系
基本信息
- 批准号:1514512
- 负责人:
- 金额:$ 22.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Directorate of Social, Behavioral and Economic Sciences offers postdoctoral research fellowships to provide opportunities for recent doctoral graduates to obtain additional training, to gain research experience under the sponsorship of established scientists, and to broaden their scientific horizons beyond their undergraduate and graduate training. Postdoctoral fellowships are further designed to assist new scientists to direct their research efforts across traditional disciplinary lines and to avail themselves of unique research resources, sites, and facilities, including at foreign locations. This postdoctoral fellowship supports a rising scientist in the interdisciplinary area overlapping computer vision and psychology, with a research project that investigates the web of relationships within visual data in both humans and machines. To a human observer, no photograph is an island: it is connected to the rest of the visual world by a web of similarities, associations, and other relationships. For example, two photos of Paris share a certain similarity; images of boats are associated with images of water; a photo of a tadpole and a photo of a frog show the same organism at two stages of life. In each of these cases, a human can readily reason about the link between two images. Not only can people identify that a relationship exists, but can also identify the nature of this relationship. These relationships shed light on how the human brain organizes visual information, and also give insight into how to build intelligent systems that automatically make visual connections. The latter will bring the field closer to producing an intelligent visual web, able to organize visual information in the same way as the current Internet is able to organize text. Computer vision scientists and psychologists have both studied relationships between visual data, but from different directions. In computer vision, the focus has been on models of natural image similarity. These models handle complex stimuli but are usually limited to one simple kind of relationship, namely similarity in appearance. Psychologists have studied a richer set of relationships - association, causation, analogy, antonymy, transformation, etc. - but their models usually only apply to simple, artificial stimuli. This project unites the best of both fields by modeling subtle visual relationships between complex, natural images. The objective is to model both which images humans consider to be related and how are those images related. An additional objective is to study how certain relationships, such as visual associations, can arise in an unsupervised manner from natural visual experience. This will help explain how humans might learn about the relationships in the first place. Better models of inter-image relationships will have deep implications across cognitive psychology. In particular, similarity and association play fundamental roles in theories of human learning and memory. A sense of similarity underlies our ability to learn from one visual experience and then apply our knowledge in a future, similar setting. The associations made from the experience additionally impact human memory of it. The present project also has applications toward computer vision systems. Reverse image search has recently become a popular tool. However, current systems are only able to retrieve look-alike images. If the computer is instead able to retrieve images linked by more diverse kinds of relationships, many possibilities open up. For example, one could imagine a system that lets users navigate through artistic styles, or that recommends shoes that match a pair of pants. If successful, this project could pave the way toward a world-wide web of visual connections that parallels the current web of hypertext connections.
社会、行为和经济科学局提供博士后研究奖学金,为新近毕业的博士毕业生提供获得额外培训的机会,在知名科学家的赞助下获得研究经验,并在本科生和研究生培训之外拓宽他们的科学视野。博士后奖学金的进一步设计是为了帮助新科学家引导他们的研究努力跨越传统的学科界限,并利用独特的研究资源、地点和设施,包括在国外。这一博士后奖学金支持一位在计算机视觉和心理学交叉学科领域崭露头角的科学家,他的研究项目调查了人类和机器视觉数据中的关系网络。对于人类观察者来说,没有一张照片是一座孤岛:它通过相似之处、联想和其他关系的网络与视觉世界的其他部分相连。例如,巴黎的两张照片有一定的相似性;船只的图像与水的图像联系在一起;一张蝌蚪的照片和一张青蛙的照片显示了同一生物在生命的两个阶段。在每一种情况下,人类都可以很容易地推理出两个图像之间的联系。人们不仅可以识别一段关系的存在,还可以识别这种关系的性质。这些关系揭示了人脑如何组织视觉信息,也让我们深入了解如何建立自动建立视觉联系的智能系统。后者将使该领域更接近于生产智能可视网络,能够像目前的互联网能够组织文本一样组织视觉信息。计算机视觉科学家和心理学家都从不同的角度研究了视觉数据之间的关系。在计算机视觉中,重点一直放在自然图像相似性模型上。这些模型处理复杂的刺激,但通常仅限于一种简单的关系,即外观相似。心理学家已经研究了一组更丰富的关系--联想、因果关系、类比、反义词、转化等等--但他们的模型通常只适用于简单的、人为的刺激。该项目通过对复杂的自然图像之间微妙的视觉关系进行建模,将这两个领域的最佳效果结合在一起。目标是对人类认为哪些图像相关以及这些图像是如何相关的进行建模。另一个目标是研究某些关系,如视觉联想,如何在自然的视觉体验中以无人监督的方式产生。这将有助于解释人类最初是如何了解这些关系的。更好的图像间关系模型将对认知心理学产生深远的影响。特别是,相似性和联想在人类学习和记忆理论中发挥着基础性的作用。相似感是我们从一次视觉体验中学习,然后将我们的知识应用到未来类似环境中的能力。从这一经历中产生的联想还会影响人类对它的记忆。本项目也适用于计算机视觉系统。最近,反向图像搜索已经成为一种流行的工具。然而,目前的系统只能检索外观相似的图像。相反,如果计算机能够检索由更多种类的关系链接的图像,就会出现许多可能性。例如,你可以想象一个让用户浏览艺术风格的系统,或者推荐一双与裤子相匹配的鞋子。如果成功,这个项目可能会为建立一个与当前的超文本连接网络相媲美的全球视觉连接网络铺平道路。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexei Efros其他文献
Alexei Efros的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexei Efros', 18)}}的其他基金
BIGDATA: F: Collaborative Research: From Visual Data to Visual Understanding
BIGDATA:F:协作研究:从视觉数据到视觉理解
- 批准号:
1633310 - 财政年份:2016
- 资助金额:
$ 22.59万 - 项目类别:
Standard Grant
CAREER: Geometrically Coherent Image Interpretation
职业:几何相干图像解释
- 批准号:
0546547 - 财政年份:2006
- 资助金额:
$ 22.59万 - 项目类别:
Continuing Grant
Data-Driven Appearance Transfer for Realistic Image Synthesis
用于真实图像合成的数据驱动的外观传输
- 批准号:
0541230 - 财政年份:2006
- 资助金额:
$ 22.59万 - 项目类别:
Continuing Grant
NIRT: Nanoscale Metalic Photonic Crystals; Fabrication, Physical Properties, and Applications
NIRT:纳米级金属光子晶体;
- 批准号:
0102964 - 财政年份:2001
- 资助金额:
$ 22.59万 - 项目类别:
Continuing Grant
Study of Inhomogeneous State of Two-Dimensional Electron Quantum Liquid
二维电子量子液体非均匀态研究
- 批准号:
9116748 - 财政年份:1992
- 资助金额:
$ 22.59万 - 项目类别:
Continuing Grant
相似国自然基金
Rich2通过调控自噬抑制炎症小体NLRP3通路在癫痫形成中的机制研
究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
前扣带回GTP酶激活蛋白RICH2介导Shank3-/-孤独症小鼠社交行为障碍的机制研究
- 批准号:82301350
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
整合素β1/RICH1复合体感应细胞外基质硬度信号调控乳腺癌侵袭转移的机制研究
- 批准号:82303462
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
转录因子NtMYB305通过AT-rich元件调控NtPMT表达及烟碱合成的分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Rich1/Amot-p80/Merlin轴通过Hippo通路调控乳腺癌干细胞样特性的机制研究
- 批准号:82002794
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
烟草花叶病毒RNA发生poly(A)-rich型多聚腺苷酸化的研究
- 批准号:31370181
- 批准年份:2013
- 资助金额:82.0 万元
- 项目类别:面上项目
端粒延伸过程中C链合成(C-rich Fill-in)的分子机理
- 批准号:31271472
- 批准年份:2012
- 资助金额:90.0 万元
- 项目类别:面上项目
ELL在前列腺癌发生中的负性作用机制及其临床意义
- 批准号:81101948
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
CA-rich顺式元件及其相互作用的反式因子对可变剪接的调控机制
- 批准号:30970620
- 批准年份:2009
- 资助金额:32.0 万元
- 项目类别:面上项目
果蝇硒蛋白G-rich的细胞定位、拓扑结构和分子功能研究
- 批准号:30671176
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
ART: Mining the Rich Vein of Research in Montana
艺术:挖掘蒙大拿州研究的丰富脉络
- 批准号:
2331325 - 财政年份:2024
- 资助金额:
$ 22.59万 - 项目类别:
Cooperative Agreement
Efficient computational technologies to resolve the Timetree of Life: from ancient DNA to species-rich phylogenies
高效计算技术解析生命时间树:从古代 DNA 到物种丰富的系统发育
- 批准号:
BB/Y004132/1 - 财政年份:2024
- 资助金额:
$ 22.59万 - 项目类别:
Research Grant
Role of nitrogen-rich compounds for increasing carbon sequestration in soil
富氮化合物在增加土壤固碳方面的作用
- 批准号:
DP240102549 - 财政年份:2024
- 资助金额:
$ 22.59万 - 项目类别:
Discovery Projects
GOAL project: AI-supported self-directed learning lifestyle in data-rich educational ecosystem
GOAL 项目:数据丰富的教育生态系统中人工智能支持的自主学习生活方式
- 批准号:
23K25156 - 财政年份:2024
- 资助金额:
$ 22.59万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Platelet-rich plasma (PRP) を用いた新しい人工神経による顔面神経再生
使用富含血小板血浆(PRP)的新型人工神经进行面神经再生
- 批准号:
24K12836 - 财政年份:2024
- 资助金额:
$ 22.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
新奇皮膚バリア因子としてのHistidine-rich glycoprotein機能評価
富含组氨酸糖蛋白作为新型皮肤屏障因子的功能评价
- 批准号:
24K18020 - 财政年份:2024
- 资助金额:
$ 22.59万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: MECHANISMS OF ASSEMBLY AND COEXISTENCE IN SPECIES-RICH MICROBIAL COMMUNITIES
职业:物种丰富的微生物群落的组装和共存机制
- 批准号:
2236782 - 财政年份:2024
- 资助金额:
$ 22.59万 - 项目类别:
Continuing Grant
リンパ脈管筋腫症病態におけるhistidine-rich glycoproteinの役割解明に関する研究
富含组氨酸糖蛋白在淋巴管平滑肌瘤病病理中作用的研究
- 批准号:
24K11332 - 财政年份:2024
- 资助金额:
$ 22.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Structural Implications of Anion Redox in Li-Rich Sulfide Cathodes for Li-ion Batteries
职业:锂离子电池富锂硫化物阴极中阴离子氧化还原的结构影响
- 批准号:
2340864 - 财政年份:2024
- 资助金额:
$ 22.59万 - 项目类别:
Continuing Grant
PROMETHEUS: Enabling a Data Rich Additive Manufacturing Process
PROMETHEUS:实现数据丰富的增材制造流程
- 批准号:
10092251 - 财政年份:2024
- 资助金额:
$ 22.59万 - 项目类别:
Collaborative R&D