Engineering-Driven Wavelet Analysis of Cyclic Functional Data for Multiple Embedded Operations Diagnosis

用于多嵌入式操作诊断的循环函数数据的工程驱动小波分析

基本信息

项目摘要

This grant provides funding for developing systematic methodologies for effectively analyzing, monitoring, and inferring of cyclic functional sensing data for multiple embedded operation diagnosis in complex processes. The proposed functional data analysis methodology will be developed through the unique fusion of engineering knowledge with statistical wavelet analysis for data dimension reduction, data segmentation, feature extraction, and root causes diagnosis. The research will be conducted through (a) systematic (rather than subjective) data segmentation through process-oriented change-point detection; (b) engineering-driven wavelet thresholding (rather than only data-denoising) for efficient feature preserving data dimension reduction; (c) multiscale diagnostic mapping algorithms for effective feature extraction and root cause diagnosis (rather than only monitoring); and (d) optimal (rather than trial-and-error) wavelet basis selection to match with specific data characteristics and data analysis objectives. If successful, the results of this research will lead to improvements of the existing statistical process control (SPC) technology by adding a new set of monitoring and diagnostic tools for high dimensional functional data to achieve better process control and quality improvement. The implementation of the proposed methodology will facilitate the development of effective monitoring and diagnostic systems to significantly reduce process downtime and manufacturing cost, thus leading to significant benefits to the national economy. The proposed work will also extensively enhance the research and broaden the application domains of wavelet analysis to achieve better functional data analysis for diagnostic purposes. Meanwhile, it will contribute to the creation of a new workforce with multidisciplinary skills through new curriculum developments, involvement of undergraduate/K-12 students in the research activities, and close industrial collaborations.
该拨款为开发系统方法提供资金,用于有效分析,监测和推断循环功能传感数据,用于复杂过程中的多个嵌入式操作诊断。提出的功能数据分析方法将通过独特的工程知识与统计小波分析的融合来发展,用于数据降维,数据分割,特征提取和根本原因诊断。研究将通过(a)通过面向过程的变化点检测进行系统的(而不是主观的)数据分割;(b)工程驱动的小波阈值(而不仅仅是数据去噪),用于有效地保留特征的数据降维;(c)用于有效特征提取和根本原因诊断(而不仅仅是监测)的多尺度诊断映射算法;(d)优化(而不是试错)小波基选择,以匹配特定的数据特征和数据分析目标。如果成功,本研究结果将导致现有统计过程控制(SPC)技术的改进,通过为高维功能数据增加一套新的监测和诊断工具,以实现更好的过程控制和质量改进。拟议方法的实施将有助于开发有效的监测和诊断系统,以大大减少工艺停机时间和制造成本,从而为国民经济带来重大利益。本研究亦将广泛加强小波分析的研究及拓展小波分析的应用领域,以达致更佳的诊断功能数据分析。同时,它将通过新课程开发、本科生/K-12学生参与研究活动以及密切的工业合作,为创造一支具有多学科技能的新劳动力做出贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jionghua (Judy) Jin其他文献

Statistical prediction of eye locations for drivers of military ground vehicles
  • DOI:
    10.1016/j.ergon.2017.03.007
  • 发表时间:
    2017-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yaser Zerehsaz;Jionghua (Judy) Jin;Sheila M. Ebert;Matthew P. Reed
  • 通讯作者:
    Matthew P. Reed
Sample size calculations for a functional human motion analysis: Application to vehicle ingress discomfort prediction
  • DOI:
    10.1016/j.ergon.2018.09.010
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Hadi Ibrahim Masoud;Matthew P. Reed;Jionghua (Judy) Jin
  • 通讯作者:
    Jionghua (Judy) Jin

Jionghua (Judy) Jin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jionghua (Judy) Jin', 18)}}的其他基金

Modeling and Inferring of Multichannel Sensing Data in Complex Manufacturing Procsses
复杂制造过程中多通道传感数据的建模和推断
  • 批准号:
    1233108
  • 财政年份:
    2012
  • 资助金额:
    $ 25.15万
  • 项目类别:
    Standard Grant
PECASE: A Unified Methodology for Variation Management and Reduction in Multistage Manufacturing Processes
PECASE:多阶段制造流程中的变异管理和减少的统一方法
  • 批准号:
    0549306
  • 财政年份:
    2005
  • 资助金额:
    $ 25.15万
  • 项目类别:
    Standard Grant
Engineering-Driven Wavelet Analysis of Cyclic Functional Data for Multiple Embedded Operations Diagnosis
用于多嵌入式操作诊断的循环函数数据的工程驱动小波分析
  • 批准号:
    0500176
  • 财政年份:
    2005
  • 资助金额:
    $ 25.15万
  • 项目类别:
    Standard Grant
PECASE: A Unified Methodology for Variation Management and Reduction in Multistage Manufacturing Processes
PECASE:多阶段制造流程中的变异管理和减少的统一方法
  • 批准号:
    0133942
  • 财政年份:
    2002
  • 资助金额:
    $ 25.15万
  • 项目类别:
    Standard Grant

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目

相似海外基金

Priceworx Ultimate+: A world-first AI-driven material cost forecaster for construction project management.
Priceworx Ultimate:世界上第一个用于建筑项目管理的人工智能驱动的材料成本预测器。
  • 批准号:
    10099966
  • 财政年份:
    2024
  • 资助金额:
    $ 25.15万
  • 项目类别:
    Collaborative R&D
Facilitating circular construction practices in the UK: A data driven online marketplace for waste building materials
促进英国的循环建筑实践:数据驱动的废弃建筑材料在线市场
  • 批准号:
    10113920
  • 财政年份:
    2024
  • 资助金额:
    $ 25.15万
  • 项目类别:
    SME Support
N2Vision+: A robot-enabled, data-driven machine vision tool for nitrogen diagnosis of arable soils
N2Vision:一种由机器人驱动、数据驱动的机器视觉工具,用于耕地土壤的氮诊断
  • 批准号:
    10091423
  • 财政年份:
    2024
  • 资助金额:
    $ 25.15万
  • 项目类别:
    Collaborative R&D
Structure-guided optimisation of light-driven microalgae cell factories
光驱动微藻细胞工厂的结构引导优化
  • 批准号:
    DP240101727
  • 财政年份:
    2024
  • 资助金额:
    $ 25.15万
  • 项目类别:
    Discovery Projects
Data Driven Discovery of New Catalysts for Asymmetric Synthesis
数据驱动的不对称合成新催化剂的发现
  • 批准号:
    DP240100102
  • 财政年份:
    2024
  • 资助金额:
    $ 25.15万
  • 项目类别:
    Discovery Projects
Maintaining Human Expertise in an AI-driven World
在人工智能驱动的世界中保持人类的专业知识
  • 批准号:
    DE240100269
  • 财政年份:
    2024
  • 资助金额:
    $ 25.15万
  • 项目类别:
    Discovery Early Career Researcher Award
PIDD-MSK: Physics-Informed Data-Driven Musculoskeletal Modelling
PIDD-MSK:物理信息数据驱动的肌肉骨骼建模
  • 批准号:
    EP/Y027930/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.15万
  • 项目类别:
    Fellowship
EDIBLES: Environmentally Driven Body-Scale Electromagnetic Co-Sensing
食用:环境驱动的人体规模电磁协同感应
  • 批准号:
    EP/Y002008/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.15万
  • 项目类别:
    Research Grant
Understanding the Impact of Outdoor Science and Environmental Learning Experiences Through Community-Driven Outcomes
通过社区驱动的成果了解户外科学和环境学习体验的影响
  • 批准号:
    2314075
  • 财政年份:
    2024
  • 资助金额:
    $ 25.15万
  • 项目类别:
    Continuing Grant
CAREER: CAS: Organic Photochemistry for Light-Driven CO2 Capture and Release
职业:CAS:光驱动二氧化碳捕获和释放的有机光化学
  • 批准号:
    2338206
  • 财政年份:
    2024
  • 资助金额:
    $ 25.15万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了