Modeling and Inferring of Multichannel Sensing Data in Complex Manufacturing Procsses

复杂制造过程中多通道传感数据的建模和推断

基本信息

项目摘要

The objective of this award is to develop general methodologies for modeling and making inferences from multichannel nonlinear sensing signals, to support quality improvement in complex manufacturing processes. Specifically, a new variable selection method using hierarchical regularization will be developed to extract informative sensing signals and signal features in modeling of the relationship between product quality and massive process sensing signals. Process variations will be analyzed by nonparametric mixed-effect models to consider the underlying cross-correlation among heterogeneous sensing signals and the inevitable between-profile variations within each sensing signal. When validated, the models will be incorporated in the development of new process monitoring and diagnosis methods. This will permit variation reduction and quality improvement in complex manufacturing processes. If successful, the results of this research will provide an effective means to enhance an online monitoring and diagnosis system with the advanced capability of automatically analyzing and assessing massive online sensing signals to improve manufacturing process operations. Implementation of the methodologies in manufacturing is expected to provide significant cost reduction as an outcome of improving product quality and reducing production downtime. Consequently the research has the potential to generate broad economic impacts by improving the competitiveness of the U.S. manufacturing industry. Moreover, multidisciplinary academic training, outreach, and broad dissemination through publications and industrial collaboration will lead to wide application of the developed methodologies to many other sensor data fusion applications that are of vital importance to the nation's economic growth.
该奖项的目的是开发通用方法,用于从多通道非线性传感信号建模和推断,以支持复杂制造过程的质量改进。具体而言,一种新的变量选择方法,使用分层正则化将开发提取信息的传感信号和信号特征之间的关系建模的产品质量和大量的过程传感信号。将通过非参数混合效应模型分析工艺变化,以考虑异质感测信号之间的潜在互相关以及每个感测信号内不可避免的轮廓间变化。在验证后,这些模型将被纳入新的过程监测和诊断方法的开发中。这将允许在复杂的制造过程中减少变化和提高质量。如果成功,本研究的结果将提供一种有效的手段,以提高在线监测和诊断系统的自动分析和评估大量的在线传感信号,以改善制造过程操作的先进能力。在制造中实施这些方法,预计将大大降低成本,因为这将提高产品质量并减少生产停机时间。因此,该研究有可能通过提高美国制造业的竞争力来产生广泛的经济影响。此外,多学科的学术培训,推广和广泛传播,通过出版物和工业合作,将导致广泛应用的开发方法,许多其他传感器数据融合应用,是至关重要的国家的经济增长。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jionghua (Judy) Jin其他文献

Statistical prediction of eye locations for drivers of military ground vehicles
  • DOI:
    10.1016/j.ergon.2017.03.007
  • 发表时间:
    2017-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yaser Zerehsaz;Jionghua (Judy) Jin;Sheila M. Ebert;Matthew P. Reed
  • 通讯作者:
    Matthew P. Reed
Sample size calculations for a functional human motion analysis: Application to vehicle ingress discomfort prediction
  • DOI:
    10.1016/j.ergon.2018.09.010
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Hadi Ibrahim Masoud;Matthew P. Reed;Jionghua (Judy) Jin
  • 通讯作者:
    Jionghua (Judy) Jin

Jionghua (Judy) Jin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jionghua (Judy) Jin', 18)}}的其他基金

PECASE: A Unified Methodology for Variation Management and Reduction in Multistage Manufacturing Processes
PECASE:多阶段制造流程中的变异管理和减少的统一方法
  • 批准号:
    0549306
  • 财政年份:
    2005
  • 资助金额:
    $ 33.6万
  • 项目类别:
    Standard Grant
Engineering-Driven Wavelet Analysis of Cyclic Functional Data for Multiple Embedded Operations Diagnosis
用于多嵌入式操作诊断的循环函数数据的工程驱动小波分析
  • 批准号:
    0541750
  • 财政年份:
    2005
  • 资助金额:
    $ 33.6万
  • 项目类别:
    Standard Grant
Engineering-Driven Wavelet Analysis of Cyclic Functional Data for Multiple Embedded Operations Diagnosis
用于多嵌入式操作诊断的循环函数数据的工程驱动小波分析
  • 批准号:
    0500176
  • 财政年份:
    2005
  • 资助金额:
    $ 33.6万
  • 项目类别:
    Standard Grant
PECASE: A Unified Methodology for Variation Management and Reduction in Multistage Manufacturing Processes
PECASE:多阶段制造流程中的变异管理和减少的统一方法
  • 批准号:
    0133942
  • 财政年份:
    2002
  • 资助金额:
    $ 33.6万
  • 项目类别:
    Standard Grant

相似海外基金

Inferring the evolution of functional connectivity over learning in large-scale neural recordings using low-tensor-rank recurrent neural networks
使用低张量秩递归神经网络推断大规模神经记录中功能连接学习的演变
  • 批准号:
    BB/Y513957/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.6万
  • 项目类别:
    Research Grant
Inferring epithelial tissue mechanics through data-efficient multi-fidelity modelling
通过数据高效的多保真度建模推断上皮组织力学
  • 批准号:
    BB/Y514020/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.6万
  • 项目类别:
    Research Grant
CAREER: Tracking correlation or inferring causation: How human language processing adapts to the environment
职业:跟踪相关性或推断因果关系:人类语言处理如何适应环境
  • 批准号:
    2336304
  • 财政年份:
    2024
  • 资助金额:
    $ 33.6万
  • 项目类别:
    Continuing Grant
Snake venom systems as a model for inferring the structure and evolution of regulatory networks underlying organism-level physiological traits
蛇毒系统作为推断生物体水平生理特征调控网络的结构和进化的模型
  • 批准号:
    2307044
  • 财政年份:
    2023
  • 资助金额:
    $ 33.6万
  • 项目类别:
    Standard Grant
Methodology for inferring directed graphs representing generative processes
推断表示生成过程的有向图的方法
  • 批准号:
    2789004
  • 财政年份:
    2023
  • 资助金额:
    $ 33.6万
  • 项目类别:
    Studentship
Inferring the gene coevolution network from deep comparative genomics
从深度比较基因组学推断基因协同进化网络
  • 批准号:
    2241312
  • 财政年份:
    2023
  • 资助金额:
    $ 33.6万
  • 项目类别:
    Standard Grant
Inferring Kinase Activity from Tumor Phosphoproteomic Data
从肿瘤磷酸化蛋白质组数据推断激酶活性
  • 批准号:
    10743051
  • 财政年份:
    2023
  • 资助金额:
    $ 33.6万
  • 项目类别:
Methods for inferring and analyzing gene regulatory networks using single-cell multiomics and spatial genomics data
使用单细胞多组学和空间基因组学数据推断和分析基因调控网络的方法
  • 批准号:
    10712174
  • 财政年份:
    2023
  • 资助金额:
    $ 33.6万
  • 项目类别:
IIBR Informatics: Mixture model algorithms for inferring covariance structures and microbial associations from microbiome data
IIBR 信息学:用于从微生物组数据推断协方差结构和微生物关联的混合模型算法
  • 批准号:
    2400009
  • 财政年份:
    2023
  • 资助金额:
    $ 33.6万
  • 项目类别:
    Standard Grant
Inferring multi-scale dynamics underlying behavior in aging C. elegans
推断衰老线虫行为背后的多尺度动力学
  • 批准号:
    10638631
  • 财政年份:
    2023
  • 资助金额:
    $ 33.6万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了