IGERT: Unifying the Science of Language
IGERT:统一语言科学
基本信息
- 批准号:0549379
- 负责人:
- 金额:$ 318.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-05-15 至 2015-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
For generations, uncovering the nature of human language has challenged researchers across a range of disciplines. Breakthrough progress requires a highly multidisciplinary yet integrated research effort, necessitating a new kind of language scientist capable of working across traditional disciplinary boundaries. This IGERT award facilitates the development of such scientists, further developing the Problem-Centered Training approach pioneered at Johns Hopkins. Through the programs Computational and Experimental Tracks, trainees will learn to deploy the diversity of methods and perspectives of linguistics, experimental psychology, computer science, cognitive neuroscience and mathematics in the attack of a single problem in the domain of language. Through an international component, trainees will gain experience in the laboratories of foreign pioneers in multiple disciplines, and will engage in research on languages other than English. Linguistics has been undergoing a revolutionary transformation, expanding its horizons to embrace the full cognitive science of language. Trainees in this IGERT will, through their graduate work and beyond, play a vital role in completing this transformation, and in bridging a number of fundamental schisms currently dividing language science. Breakthroughs arising from a unified science of language will have major long-term impact on language education. In the short term, scientists trained in the Computational Track will transfer insight from linguistic theory to language engineering, impacting commercial and security technology. Through a suite of special outreach mechanisms targeting not only Ph.D. applicants, but also their faculty mentors and a broader undergraduate population, the program promotes the involvement of underrepresented minorities in scientific research. IGERT is an NSF-wide program intended to meet the challenges of educating U.S. Ph.D. scientists and engineers with the interdisciplinary background, deep knowledge in a chosen discipline, and the technical, professional, and personal skills needed for the career demands of the future. The program is intended to catalyze a cultural change in graduate education by establishing innovative new models for graduate education and training in a fertile environment for collaborative research that transcends traditional disciplinary boundaries.
几代人以来,揭示人类语言的本质一直是一系列学科研究人员的挑战。突破性的进展需要高度多学科但综合的研究努力,需要一种能够跨越传统学科界限的新型语言科学家。这个IGERT奖促进了这些科学家的发展,进一步发展了以问题为中心的培训方法在约翰霍普金斯开创。通过计算和实验轨道项目,学员将学习运用语言学、实验心理学、计算机科学、认知神经科学和数学的多种方法和观点来解决语言领域的单个问题。通过国际部分,学员将在多个学科的外国先驱实验室获得经验,并将从事英语以外的语言研究。语言学正在经历一场革命性的变革,它的视野不断扩大,涵盖了语言的全部认知科学。在这个IGERT的学员将通过他们的研究生工作和超越,在完成这一转变,并在弥合目前划分语言科学的一些基本分裂发挥至关重要的作用。统一的语言科学所带来的突破将对语言教育产生重大的长期影响。在短期内,在计算轨道培训的科学家将从语言理论转移到语言工程的见解,影响商业和安全技术。 通过一套特殊的外展机制,不仅针对博士,申请人,而且他们的教师导师和更广泛的本科生人口,该计划促进参与科学研究的代表性不足的少数民族。 IGERT是一个NSF范围内的计划,旨在满足教育美国博士的挑战。具有跨学科背景的科学家和工程师,在所选学科的深厚知识,以及未来职业需求所需的技术,专业和个人技能。该计划旨在通过建立创新的研究生教育和培训新模式,在超越传统学科界限的合作研究的肥沃环境中促进研究生教育的文化变革。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Smolensky其他文献
The Interaction of Syntax and Semantics : A Harmonic Grammar Account of Split Intransitivity, in "the Harmonic Mind, from neural computation to optimality-theoretic grammar", (Paul Smolensky & Geraldine Legendre (Eds)), p417-451
句法和语义的相互作用:分裂不及物性的和谐语法解释,在“和谐思维,从神经计算到最优性理论语法”中,(Paul Smolensky 和 Geraldine Legendre(编辑)),p417-451
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Geraldine Legendre;Yoshiro Miyata;Paul Smolensky - 通讯作者:
Paul Smolensky
日本語スピード入力検定用Web教材の試作
日语速度输入测试网络教材原型
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Graldine Legendre;Yoshiro Miyata;Paul Smolensky;武岡 さおり;杉村 藍;Masahiro Ozaki;Saori Takeoka;Ai Sugimura;武岡さおり;尾崎正弘;杉村藍;橋本信也;武岡さおり - 通讯作者:
武岡さおり
Web学習における学習支援のための推論アルゴリズムの開発に向けて
开发用于网络学习中的学习支持的推理算法
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Graldine Legendre;Yoshiro Miyata;Paul Smolensky;武岡 さおり;杉村 藍;Masahiro Ozaki;Saori Takeoka;Ai Sugimura;武岡さおり;尾崎正弘;杉村藍;橋本信也;武岡さおり;尾崎 正弘 - 通讯作者:
尾崎 正弘
Problems and a Solution Of CALL in English Learning
CALL在英语学习中存在的问题及解决办法
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Graldine Legendre;Yoshiro Miyata;Paul Smolensky;武岡 さおり;杉村 藍;Masahiro Ozaki;Saori Takeoka;Ai Sugimura - 通讯作者:
Ai Sugimura
自己モニタリングが英語学習に及ぼす効果について(第2報)
论自我监控对英语学习的影响(下)
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Graldine Legendre;Yoshiro Miyata;Paul Smolensky;武岡 さおり;杉村 藍;Masahiro Ozaki;Saori Takeoka;Ai Sugimura;武岡さおり;尾崎正弘;杉村藍;橋本信也;武岡さおり;尾崎 正弘;Masahiro Ozaki;橋本 信也;武岡 さおり;杉村 藍 - 通讯作者:
杉村 藍
Paul Smolensky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Smolensky', 18)}}的其他基金
Doctoral Dissertation Research: Compositional Linguistic Generalization in Human and Machine Learning
博士论文研究:人类和机器学习中的组合语言泛化
- 批准号:
2041221 - 财政年份:2021
- 资助金额:
$ 318.28万 - 项目类别:
Standard Grant
INSPIRE Track 1: Gradient Symbolic Computation
INSPIRE Track 1:梯度符号计算
- 批准号:
1344269 - 财政年份:2013
- 资助金额:
$ 318.28万 - 项目类别:
Continuing Grant
Statistical Learning of Linguistic Structure
语言结构的统计学习
- 批准号:
0446929 - 财政年份:2005
- 资助金额:
$ 318.28万 - 项目类别:
Continuing Grant
IGERT Formal Proposal: Problem-centered research training: Integrating formal and empirical methods in the cognitive science of language
IGERT 正式提案:以问题为中心的研究培训:在语言认知科学中整合形式和经验方法
- 批准号:
9972807 - 财政年份:1999
- 资助金额:
$ 318.28万 - 项目类别:
Continuing Grant
Learning and Intelligent Systems: Optimization in Language and Language Learning
学习和智能系统:语言和语言学习的优化
- 批准号:
9720412 - 财政年份:1997
- 资助金额:
$ 318.28万 - 项目类别:
Continuing Grant
Integration of Connectionist and Symbolic Computation for Linguistic Modeling
语言建模中联结主义和符号计算的集成
- 批准号:
9596120 - 财政年份:1994
- 资助金额:
$ 318.28万 - 项目类别:
Continuing Grant
Integration of Connectionist and Symbolic Computation for Linguistic Modeling
语言建模中联结主义和符号计算的集成
- 批准号:
9213894 - 财政年份:1993
- 资助金额:
$ 318.28万 - 项目类别:
Continuing Grant
Towards an Integrated Connectionist/Symbolic Theory of Higher Cognition (REU Supplement)
走向更高认知的综合联结主义/符号理论(REU 补充)
- 批准号:
9209265 - 财政年份:1992
- 资助金额:
$ 318.28万 - 项目类别:
Standard Grant
Distributed Processing in Continuous Optical Media
连续光介质中的分布式处理
- 批准号:
8617947 - 财政年份:1987
- 资助金额:
$ 318.28万 - 项目类别:
Standard Grant
Computer-Aided Reasoned Discourse (Computer and Information Science)
计算机辅助推理话语(计算机与信息科学)
- 批准号:
8617383 - 财政年份:1987
- 资助金额:
$ 318.28万 - 项目类别:
Continuing Grant
相似海外基金
UNIfying Grid-FOllowing And Grid-foRMing Control In Inverter-based Resources (UNIFORM)
统一基于逆变器的资源中的网格跟随和网格形成控制(UNIFORM)
- 批准号:
EP/Y001575/1 - 财政年份:2024
- 资助金额:
$ 318.28万 - 项目类别:
Research Grant
Unifying Object Detection and Image Captioning using Vision-Language Knowledge Base for Open-World Comprehension
使用视觉语言知识库统一对象检测和图像描述以实现开放世界理解
- 批准号:
24K20830 - 财政年份:2024
- 资助金额:
$ 318.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Dual Reinforcement Learning: A Unifying Framework with Guarantees
职业:双重强化学习:有保证的统一框架
- 批准号:
2340651 - 财政年份:2024
- 资助金额:
$ 318.28万 - 项目类别:
Continuing Grant
A unifying model for ion exchange membranes – towards a low carbon future
离子交换膜的统一模型 — 迈向低碳未来
- 批准号:
DP240101405 - 财政年份:2024
- 资助金额:
$ 318.28万 - 项目类别:
Discovery Projects
CAREER: Unifying Scientific Knowledge with Machine Learning for Forward, Inverse, and Hybrid Modeling of Scientific Systems
职业:将科学知识与机器学习相结合,对科学系统进行正向、逆向和混合建模
- 批准号:
2239328 - 财政年份:2023
- 资助金额:
$ 318.28万 - 项目类别:
Continuing Grant
Unifying Pre-training and Multilingual Semantic Representation Learning for Low-resource Neural Machine Translation
统一预训练和多语言语义表示学习以实现低资源神经机器翻译
- 批准号:
22KJ1843 - 财政年份:2023
- 资助金额:
$ 318.28万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Unifying discrete and continuous methods in quantum information theory
统一量子信息论中的离散和连续方法
- 批准号:
FT230100571 - 财政年份:2023
- 资助金额:
$ 318.28万 - 项目类别:
ARC Future Fellowships
"Circular Transparency Platform", unifying the apparel value chain: From Thread to Second Life+. Enabling stakeholders from manufacturing and retail, to engage consumers with visual, incentivised Environmental, Social and Circular product experiences
“循环透明平台”,统一服装价值链:从Thread到Second Life。
- 批准号:
10059608 - 财政年份:2023
- 资助金额:
$ 318.28万 - 项目类别:
Collaborative R&D
Unifying models of information processing across machine learning, artificial intelligence and neuroscience
统一机器学习、人工智能和神经科学的信息处理模型
- 批准号:
EP/X011151/1 - 财政年份:2023
- 资助金额:
$ 318.28万 - 项目类别:
Fellowship
Unifying Probabilistic Computation for PDEs and Linear Systems
统一偏微分方程和线性系统的概率计算
- 批准号:
EP/Y001028/1 - 财政年份:2023
- 资助金额:
$ 318.28万 - 项目类别:
Research Grant