Focused Research Group: Collaborative Research: Geometry and Deformation Theory of Hyperbolic 3-Manifolds
重点研究组:合作研究:双曲3流形的几何与变形理论
基本信息
- 批准号:0554239
- 负责人:
- 金额:$ 13.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Since Thurston formulated his geometrization conjecture, the study of infinite volume hyperbolic 3-manifolds has risen to a prominent position in low-dimensional topology and geometry. For the past 30 years four major conjectures have guided this area: Marden's Tameness Conjecture, Thurston's Ending Lamination Conjecture, the Bers-Thurston-Sullivan Density Conjecture and Ahlfors' Measure Conjecture; all have been resolved in the last four years. The solutions of these conjectures have introduced new techniques into the field and opened the door to deeper investigation and the exploration of new directions. In this Focused Research Group, the principalinvestigators propose to use these new techniques to deepen their understanding of the geometry of hyperbolic 3-manifolds, both of infinite and of finite volume, to explore further their still mysterious deformation theory, to pioneer new directions for research in the field, and to develop connections with related branches of low-dimensional geometry and topology.Since the time of Poincare, topologists have pursued the idea that certain spaces called 3-manifolds might be simply described. In the 1970's, Thurston's geometrization conjecture showed topologists the power of bringing geometry to bear on this problem, and opened the possiblity for broad connections between topological, geometric and dynamical features that arise. Using technical tools arising from recent breakthroughs, the PIs hope to interconnect further these different perspectives on the field, and expose early career mathematicians and graduate students to the new range of problems emerging from this fertile area. The Focused Research Group will fund small conferences during its first and final year focused on emerging research areas, with introductory workshops to be run on the day prior to the beginning of the conference. This project will also support the research of the principal investigators' graduate students and provide travel funding for their interaction across institutions. Each of these efforts will allow young geometers and topologists both to learn about the exciting recent developments in the field and to explore the new directions opened up by these developments.
自从Thurston提出他的几何化猜想以来,无限体积双曲三维流形的研究在低维拓扑学和几何学中已经上升到一个突出的位置。 在过去的30年里,有四个主要的猜想指导着这个领域:马尔登的驯服猜想,瑟斯顿的终结层压猜想,Bers-Thurston-Sullivan密度猜想和Ahlfors的测度猜想;所有这些都在过去的四年里得到了解决。 这些解决方案为该领域引入了新技术,并为更深入的研究和新方向的探索打开了大门。 在这个专题研究小组中,主要的研究人员建议使用这些新技术来加深他们对双曲三维流形几何的理解,包括无限和有限体积,进一步探索他们仍然神秘的变形理论,开拓该领域研究的新方向,并与低维几何和拓扑学的相关分支建立联系。拓扑学家一直在追求这样的想法,即某些称为三维流形的空间可以被简单地描述。 在20世纪70年代,瑟斯顿的几何化猜想向拓扑学家展示了将几何学应用于这个问题的力量,并为拓扑、几何和动力学特征之间的广泛联系开辟了可能性。 使用技术工具所产生的最新突破,PI希望进一步互连这些领域的不同观点,并暴露早期职业数学家和研究生从这个肥沃的领域出现的新问题。 重点研究小组将在其第一年和最后一年资助小型会议,重点是新兴的研究领域,介绍性研讨会将在会议开始前一天举行。 该项目还将支持主要研究人员的研究生的研究,并为他们在各机构之间的互动提供旅费。每一个这些努力将使年轻的geometers和topologists都了解令人兴奋的最新发展领域,并探讨新的方向开辟了这些发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Canary其他文献
The pressure metric for Anosov representations
- DOI:
10.1007/s00039-015-0333-8 - 发表时间:
2015-06-20 - 期刊:
- 影响因子:2.500
- 作者:
Martin Bridgeman;Richard Canary;François Labourie;Andres Sambarino - 通讯作者:
Andres Sambarino
A new foreword for Notes on Notes of Thurston
《瑟斯顿笔记笔记》的新前言
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Richard Canary - 通讯作者:
Richard Canary
Entropy rigidity for cusped Hitchin representations
尖点希钦表示的熵刚性
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Richard Canary;Tengren Zhang;Andrew M. Zimmer - 通讯作者:
Andrew M. Zimmer
Quasiconformal Homogeneity after Gehring and Palka
- DOI:
10.1007/s40315-014-0057-z - 发表时间:
2014-03-29 - 期刊:
- 影响因子:0.700
- 作者:
Petra Bonfert-Taylor;Richard Canary;Edward C. Taylor - 通讯作者:
Edward C. Taylor
Richard Canary的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Canary', 18)}}的其他基金
Deformation spaces of geometric structures
几何结构的变形空间
- 批准号:
2304636 - 财政年份:2023
- 资助金额:
$ 13.19万 - 项目类别:
Standard Grant
Conference: I.H.E.S. Workshop: Homogeneous Dynamics and Geometry in Higher-Rank Lie Groups
会议:I.H.E.S.
- 批准号:
2321093 - 财政年份:2023
- 资助金额:
$ 13.19万 - 项目类别:
Standard Grant
Conference: Midwest Research Experience for Graduates (MREG) 2023
会议:中西部毕业生研究经验 (MREG) 2023
- 批准号:
2317485 - 财政年份:2023
- 资助金额:
$ 13.19万 - 项目类别:
Standard Grant
Deformation Spaces of Geometric Structures
几何结构的变形空间
- 批准号:
1906441 - 财政年份:2019
- 资助金额:
$ 13.19万 - 项目类别:
Standard Grant
Workshop on Groups, Geometry and Dynamics
群、几何与动力学研讨会
- 批准号:
1825533 - 财政年份:2018
- 资助金额:
$ 13.19万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Geometric Structures on Higher Teichmuller Spaces
FRG:协作研究:更高 Teichmuller 空间上的几何结构
- 批准号:
1564362 - 财政年份:2016
- 资助金额:
$ 13.19万 - 项目类别:
Continuing Grant
Deformation spaces of geometric structures
几何结构的变形空间
- 批准号:
1306992 - 财政年份:2013
- 资助金额:
$ 13.19万 - 项目类别:
Standard Grant
Deformation spaces of hyperbolic 3-manifolds
双曲3流形的变形空间
- 批准号:
1006298 - 财政年份:2010
- 资助金额:
$ 13.19万 - 项目类别:
Standard Grant
Generalized Branched Coverings and Parameterizations
广义分支覆盖和参数化
- 批准号:
0757732 - 财政年份:2008
- 资助金额:
$ 13.19万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Canadian Research Group focused on Breastfeeding Protection, Promotion and Support
加拿大研究小组专注于母乳喂养的保护、促进和支持
- 批准号:
468187 - 财政年份:2022
- 资助金额:
$ 13.19万 - 项目类别:
Miscellaneous Programs
Translating research into school-based practice via small-group, language-focused comprehension intervention
通过小组、以语言为中心的理解干预将研究转化为校本实践
- 批准号:
10323244 - 财政年份:2021
- 资助金额:
$ 13.19万 - 项目类别:
Translating research into school-based practice via small-group, language-focused comprehension intervention
通过小组、以语言为中心的理解干预将研究转化为校本实践
- 批准号:
10042180 - 财政年份:2021
- 资助金额:
$ 13.19万 - 项目类别:
Translating research into school-based practice via small-group, language-focused comprehension intervention
通过小组、以语言为中心的理解干预将研究转化为校本实践
- 批准号:
10541200 - 财政年份:2021
- 资助金额:
$ 13.19万 - 项目类别:
Focused Research Group: Collaborative Research: Geometry and Deformation Theory of Hyperbolic 3-Manifolds
重点研究组:合作研究:双曲3流形的几何与变形理论
- 批准号:
0554321 - 财政年份:2006
- 资助金额:
$ 13.19万 - 项目类别:
Standard Grant
Focused Research Group: Collaborative Research: Geometry and Deformation Theory of Hyperbolic 3-Manifolds
重点研究组:合作研究:双曲3流形的几何与变形理论
- 批准号:
0554569 - 财政年份:2006
- 资助金额:
$ 13.19万 - 项目类别:
Standard Grant
Focused Research Group: Collaborative Research: Geometry and Deformation Theory of Hyperbolic 3-Manifolds
重点研究组:合作研究:双曲3流形的几何与变形理论
- 批准号:
0553694 - 财政年份:2006
- 资助金额:
$ 13.19万 - 项目类别:
Standard Grant
Collaborative Research: a Focused Research Group on Multiscale Geometric Analysis -- Theory, Tools, and Applications
协作研究:多尺度几何分析的重点研究小组——理论、工具和应用
- 批准号:
0140540 - 财政年份:2002
- 资助金额:
$ 13.19万 - 项目类别:
Continuing Grant
Collaborative Research: A Focused Research Group on Multiscale Geometric Analysis--Theory, Tools, Applications
协作研究:多尺度几何分析重点研究小组——理论、工具、应用
- 批准号:
0140698 - 财政年份:2002
- 资助金额:
$ 13.19万 - 项目类别:
Standard Grant
Collaborative Research: a Focused Research Group on Multiscale Geometric Analysis -- Theory, Tools, and Applications
协作研究:多尺度几何分析的重点研究小组——理论、工具和应用
- 批准号:
0140587 - 财政年份:2002
- 资助金额:
$ 13.19万 - 项目类别:
Standard Grant