Deformation spaces of geometric structures

几何结构的变形空间

基本信息

项目摘要

The PI will investigate deformation spaces of geometric structures on n-dimensional manifolds. A manifold is a mathematical object which looks locally like ordinary Euclidean space, but can have higher or lower dimension. Two-dimensional manifolds are called surfaces (e.g., the surface of a football, a donut or a pretzel), while our universe is an example of a 3-dimensional manifold. The study of deformations of possible geometric structures on manifolds arises naturally in many fields of mathematics as well as in physics. The PI will also contribute to the mathematical community through involvement in the Inquiry Based Learning Center at the University of Michigan, his involvement in the formation of the MACSS scholars program which is designed to support low-income students majoring in Mathematics, Computer Science and Statistics, curriculum development for undergraduate courses, serving as editor of mathematical journals, organizing conferences, and mentoring undergraduate students, graduate students and postdoctoral assistant professors.Specifically, the project focuses on the study of the Hitchin component of higher rank structures on surfaces and on space of hyperbolic structures on 3-manifolds. The Hitchin component is the pre-eminent example of a Higher Teichmuller space of representations of a closed surface group into a semi-simple Lie group. Striking analogies with classical Teichmuller theory have been discovered, including pressure metrics which generalize the Weil-Petersson metric from classical Teichmuller theory. The metric completion of the Teichmuller space of a closed surface, with respect to the Weil-Petersson metric, is the augmented Teichmuller space, which one may view as the orbifold universal cover of moduli space. PI will study the metric completion of the Hitchin component with respect to a pressure metric and to develop a geometric theory of the augmented Hitchin component which parallels the classical theory. The proof of Thurston’s Ending Lamination Conjecture developed many new tools for the study of hyperbolic 3-manifolds and their deformation spaces. In the original proof of the Ending Lam- ination Conjecture one obtains uniform bilipschitz models for hyperbolic 3-manifolds homotopy equivalent to an orientable closed surface. PI will develop uniformly bilipschitz combinatorial models for any hyperbolic 3-manifold with finitely generated, freely indecomposable fundamental group.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PI将研究n维流形上几何结构的变形空间。流形是一种数学对象,它在局部看起来像普通的欧几里得空间,但可以有更高或更低的维度。二维流形被称为曲面(例如,足球、甜甜圈或椒盐卷饼的表面),而我们的宇宙是三维流形的一个例子。流形上可能的几何结构的变形的研究在数学和物理学的许多领域都很自然地出现。PI还将通过参与密歇根大学的研究性学习中心,参与MACSS学者计划的形成,该计划旨在支持主修数学,计算机科学和统计学的低收入学生,本科课程的课程开发,担任数学期刊的编辑,组织会议和指导本科生,为数学界做出贡献。研究生和博士后助理教授。具体而言,本项目主要研究曲面上高阶结构的Hitchin分量和3流形上双曲结构的空间。Hitchin分量是将封闭曲面群表示为半单李群的高等Teichmuller空间的杰出例子。发现了与经典Teichmuller理论惊人的相似之处,包括从经典Teichmuller理论推广Weil-Petersson度量的压力度量。封闭曲面的Teichmuller空间相对于Weil-Petersson度规的度规补全是增广的Teichmuller空间,可以看作模空间的轨道泛盖。PI将研究希钦分量相对于压力度规的度规完备性,并发展与经典理论平行的增广希钦分量的几何理论。瑟斯顿终结层合猜想的证明为双曲型3流形及其变形空间的研究提供了许多新的工具。在终结化猜想的原始证明中,得到了等价于可定向闭曲面的双曲3流形同伦的一致bilipschitz模型。对于任何具有有限生成的、自由不可分解的基本群的双曲3-流形,PI将建立一致的bilipschitz组合模型。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Canary其他文献

The pressure metric for Anosov representations
  • DOI:
    10.1007/s00039-015-0333-8
  • 发表时间:
    2015-06-20
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Martin Bridgeman;Richard Canary;François Labourie;Andres Sambarino
  • 通讯作者:
    Andres Sambarino
A new foreword for Notes on Notes of Thurston
《瑟斯顿笔记笔记》的新前言
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Richard Canary
  • 通讯作者:
    Richard Canary
Entropy rigidity for cusped Hitchin representations
尖点希钦表示的熵刚性
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Richard Canary;Tengren Zhang;Andrew M. Zimmer
  • 通讯作者:
    Andrew M. Zimmer
Quasiconformal Homogeneity after Gehring and Palka
  • DOI:
    10.1007/s40315-014-0057-z
  • 发表时间:
    2014-03-29
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Petra Bonfert-Taylor;Richard Canary;Edward C. Taylor
  • 通讯作者:
    Edward C. Taylor

Richard Canary的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Canary', 18)}}的其他基金

Conference: I.H.E.S. Workshop: Homogeneous Dynamics and Geometry in Higher-Rank Lie Groups
会议:I.H.E.S.
  • 批准号:
    2321093
  • 财政年份:
    2023
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Standard Grant
Conference: Midwest Research Experience for Graduates (MREG) 2023
会议:中西部毕业生研究经验 (MREG) 2023
  • 批准号:
    2317485
  • 财政年份:
    2023
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Standard Grant
Deformation Spaces of Geometric Structures
几何结构的变形空间
  • 批准号:
    1906441
  • 财政年份:
    2019
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Standard Grant
Workshop on Groups, Geometry and Dynamics
群、几何与动力学研讨会
  • 批准号:
    1825533
  • 财政年份:
    2018
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Geometric Structures on Higher Teichmuller Spaces
FRG:协作研究:更高 Teichmuller 空间上的几何结构
  • 批准号:
    1564362
  • 财政年份:
    2016
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Continuing Grant
Geometry of Groups in Montevideo
蒙得维的亚的群几何
  • 批准号:
    1561533
  • 财政年份:
    2016
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Standard Grant
Deformation spaces of geometric structures
几何结构的变形空间
  • 批准号:
    1306992
  • 财政年份:
    2013
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Standard Grant
Deformation spaces of hyperbolic 3-manifolds
双曲3流形的变形空间
  • 批准号:
    1006298
  • 财政年份:
    2010
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Standard Grant
Generalized Branched Coverings and Parameterizations
广义分支覆盖和参数化
  • 批准号:
    0757732
  • 财政年份:
    2008
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Standard Grant
Focused Research Group: Collaborative Research: Geometry and Deformation Theory of Hyperbolic 3-Manifolds
重点研究组:合作研究:双曲3流形的几何与变形理论
  • 批准号:
    0554239
  • 财政年份:
    2006
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Standard Grant

相似国自然基金

Bergman空间上的Toeplitz算子及Hankel算子的性质
  • 批准号:
    11126061
  • 批准年份:
    2011
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
分形上的分析及其应用
  • 批准号:
    10471150
  • 批准年份:
    2004
  • 资助金额:
    15.0 万元
  • 项目类别:
    面上项目

相似海外基金

Deformation Spaces of Geometric Structures
几何结构的变形空间
  • 批准号:
    1906441
  • 财政年份:
    2019
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Standard Grant
Deformation Spaces of Geometric Structures
几何结构的变形空间
  • 批准号:
    1812216
  • 财政年份:
    2018
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Standard Grant
Geometry and dynamics on deformation spaces of geometric structures
几何结构变形空间的几何与动力学
  • 批准号:
    1650811
  • 财政年份:
    2016
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Standard Grant
Geometry and dynamics on deformation spaces of geometric structures
几何结构变形空间的几何与动力学
  • 批准号:
    1506920
  • 财政年份:
    2015
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Deformation Spaces of Geometric Structures
FRG:协作研究:几何结构的变形空间
  • 批准号:
    1536017
  • 财政年份:
    2014
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Standard Grant
Deformation spaces of geometric structures
几何结构的变形空间
  • 批准号:
    1306992
  • 财政年份:
    2013
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Deformation Spaces of Geometric Structures
FRG:协作研究:几何结构的变形空间
  • 批准号:
    1065919
  • 财政年份:
    2011
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Deformation Spaces of Geometric Structures
FRG:协作研究:几何结构的变形空间
  • 批准号:
    1065939
  • 财政年份:
    2011
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Standard Grant
FRG: COLLABORATIVE RESEARCH: DEFORMATION SPACES OF GEOMETRIC STRUCTURES
FRG:协作研究:几何结构的变形空间
  • 批准号:
    1065965
  • 财政年份:
    2011
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Standard Grant
FRG:Collaborative Research: Deformation spaces of geometric structures
FRG:合作研究:几何结构的变形空间
  • 批准号:
    1065872
  • 财政年份:
    2011
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了