Deformation spaces of geometric structures
几何结构的变形空间
基本信息
- 批准号:2304636
- 负责人:
- 金额:$ 40.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The PI will investigate deformation spaces of geometric structures on n-dimensional manifolds. A manifold is a mathematical object which looks locally like ordinary Euclidean space, but can have higher or lower dimension. Two-dimensional manifolds are called surfaces (e.g., the surface of a football, a donut or a pretzel), while our universe is an example of a 3-dimensional manifold. The study of deformations of possible geometric structures on manifolds arises naturally in many fields of mathematics as well as in physics. The PI will also contribute to the mathematical community through involvement in the Inquiry Based Learning Center at the University of Michigan, his involvement in the formation of the MACSS scholars program which is designed to support low-income students majoring in Mathematics, Computer Science and Statistics, curriculum development for undergraduate courses, serving as editor of mathematical journals, organizing conferences, and mentoring undergraduate students, graduate students and postdoctoral assistant professors.Specifically, the project focuses on the study of the Hitchin component of higher rank structures on surfaces and on space of hyperbolic structures on 3-manifolds. The Hitchin component is the pre-eminent example of a Higher Teichmuller space of representations of a closed surface group into a semi-simple Lie group. Striking analogies with classical Teichmuller theory have been discovered, including pressure metrics which generalize the Weil-Petersson metric from classical Teichmuller theory. The metric completion of the Teichmuller space of a closed surface, with respect to the Weil-Petersson metric, is the augmented Teichmuller space, which one may view as the orbifold universal cover of moduli space. PI will study the metric completion of the Hitchin component with respect to a pressure metric and to develop a geometric theory of the augmented Hitchin component which parallels the classical theory. The proof of Thurston’s Ending Lamination Conjecture developed many new tools for the study of hyperbolic 3-manifolds and their deformation spaces. In the original proof of the Ending Lam- ination Conjecture one obtains uniform bilipschitz models for hyperbolic 3-manifolds homotopy equivalent to an orientable closed surface. PI will develop uniformly bilipschitz combinatorial models for any hyperbolic 3-manifold with finitely generated, freely indecomposable fundamental group.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PI将研究n维流形上几何结构的变形空间。流形是一个数学对象,它在局部看起来像普通的欧几里得空间,但可以有更高或更低的维度。二维流形被称为曲面(例如,足球、甜甜圈或椒盐卷饼的表面),而我们的宇宙是三维流形的一个例子。流形上可能的几何结构的变形的研究自然出现在许多数学领域以及物理学中。PI还将通过参与密歇根大学的探究式学习中心为数学界做出贡献,他参与了MACSS学者计划的形成,该计划旨在支持数学,计算机科学和统计学专业的低收入学生,本科课程的课程开发,担任数学期刊的编辑,组织会议,并指导本科生,研究生和博士后助理教授。具体而言,该项目侧重于研究曲面上的高阶结构的Hitchin分量和三维流形上的双曲结构空间。 希钦分量是将闭曲面群表示为半单李群的高等泰希穆勒空间的杰出例子。与经典泰希穆勒理论惊人的相似性已经被发现,包括从经典泰希穆勒理论推广Weil-Petersson度量的压力度量。闭曲面的Teichmuller空间关于Weil-Petersson度量的度量完备化是增广的Teichmuller空间,可以看作模空间的轨道泛覆盖。PI将研究希钦组成部分的度量完成相对于压力度量,并制定一个几何理论的增强希钦组成部分平行的经典理论。Thurston终结层猜想的证明为双曲三维流形及其变形空间的研究提供了许多新的工具。在终结层猜想的原始证明中,得到了双曲3-流形同伦等价于可定向闭曲面的一致bilipschitz模型。PI将为任何双曲3流形开发统一的bilipschitz组合模型,该双曲3流形具有非线性生成的、自由不可分解的基本群。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Canary其他文献
The pressure metric for Anosov representations
- DOI:
10.1007/s00039-015-0333-8 - 发表时间:
2015-06-20 - 期刊:
- 影响因子:2.500
- 作者:
Martin Bridgeman;Richard Canary;François Labourie;Andres Sambarino - 通讯作者:
Andres Sambarino
A new foreword for Notes on Notes of Thurston
《瑟斯顿笔记笔记》的新前言
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Richard Canary - 通讯作者:
Richard Canary
Entropy rigidity for cusped Hitchin representations
尖点希钦表示的熵刚性
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Richard Canary;Tengren Zhang;Andrew M. Zimmer - 通讯作者:
Andrew M. Zimmer
Quasiconformal Homogeneity after Gehring and Palka
- DOI:
10.1007/s40315-014-0057-z - 发表时间:
2014-03-29 - 期刊:
- 影响因子:0.700
- 作者:
Petra Bonfert-Taylor;Richard Canary;Edward C. Taylor - 通讯作者:
Edward C. Taylor
Richard Canary的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Canary', 18)}}的其他基金
Conference: Midwest Research Experience for Graduates (MREG) 2023
会议:中西部毕业生研究经验 (MREG) 2023
- 批准号:
2317485 - 财政年份:2023
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
Conference: I.H.E.S. Workshop: Homogeneous Dynamics and Geometry in Higher-Rank Lie Groups
会议:I.H.E.S.
- 批准号:
2321093 - 财政年份:2023
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
Deformation Spaces of Geometric Structures
几何结构的变形空间
- 批准号:
1906441 - 财政年份:2019
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
Workshop on Groups, Geometry and Dynamics
群、几何与动力学研讨会
- 批准号:
1825533 - 财政年份:2018
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Geometric Structures on Higher Teichmuller Spaces
FRG:协作研究:更高 Teichmuller 空间上的几何结构
- 批准号:
1564362 - 财政年份:2016
- 资助金额:
$ 40.6万 - 项目类别:
Continuing Grant
Deformation spaces of geometric structures
几何结构的变形空间
- 批准号:
1306992 - 财政年份:2013
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
Deformation spaces of hyperbolic 3-manifolds
双曲3流形的变形空间
- 批准号:
1006298 - 财政年份:2010
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
Generalized Branched Coverings and Parameterizations
广义分支覆盖和参数化
- 批准号:
0757732 - 财政年份:2008
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
Focused Research Group: Collaborative Research: Geometry and Deformation Theory of Hyperbolic 3-Manifolds
重点研究组:合作研究:双曲3流形的几何与变形理论
- 批准号:
0554239 - 财政年份:2006
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
相似国自然基金
Bergman空间上的Toeplitz算子及Hankel算子的性质
- 批准号:11126061
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
分形上的分析及其应用
- 批准号:10471150
- 批准年份:2004
- 资助金额:15.0 万元
- 项目类别:面上项目
相似海外基金
Deformation Spaces of Geometric Structures
几何结构的变形空间
- 批准号:
1906441 - 财政年份:2019
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
Deformation Spaces of Geometric Structures
几何结构的变形空间
- 批准号:
1812216 - 财政年份:2018
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
Geometry and dynamics on deformation spaces of geometric structures
几何结构变形空间的几何与动力学
- 批准号:
1650811 - 财政年份:2016
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
Geometry and dynamics on deformation spaces of geometric structures
几何结构变形空间的几何与动力学
- 批准号:
1506920 - 财政年份:2015
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Deformation Spaces of Geometric Structures
FRG:协作研究:几何结构的变形空间
- 批准号:
1536017 - 财政年份:2014
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
Deformation spaces of geometric structures
几何结构的变形空间
- 批准号:
1306992 - 财政年份:2013
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Deformation Spaces of Geometric Structures
FRG:协作研究:几何结构的变形空间
- 批准号:
1065919 - 财政年份:2011
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Deformation Spaces of Geometric Structures
FRG:协作研究:几何结构的变形空间
- 批准号:
1065939 - 财政年份:2011
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
FRG: COLLABORATIVE RESEARCH: DEFORMATION SPACES OF GEOMETRIC STRUCTURES
FRG:协作研究:几何结构的变形空间
- 批准号:
1065965 - 财政年份:2011
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
FRG:Collaborative Research: Deformation spaces of geometric structures
FRG:合作研究:几何结构的变形空间
- 批准号:
1065872 - 财政年份:2011
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant