Generalized Branched Coverings and Parameterizations
广义分支覆盖和参数化
基本信息
- 批准号:0757732
- 负责人:
- 金额:$ 10.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project involves investigations into the global conformal geometry of Riemannian manifolds and the local quasiconformal geometry of nonsmooth manifolds. Questions and proposed methods arise from analysis, geometry, and topology. The main topics are the global rigidity phenomena of mappings distorting the infinitesimal conformal geometry and natural local parameterizations of nonsmooth quasiconformal geometries. New methods that go beyond the range of nonlinear potential theory in the context of global rigidity questions will be introduced, and new geometric structures on quasiconformal manifolds will be explored.Quasiconformal methods give information about the geometrical properties of spaces simultaneously at all scales. These methods have their roots in complex analysis and in the geometry of the complex plane. The methods, however, can be used both in higher dimensions and in spaces where analysis based on traditional calculus is not available. Mathematical areas of application for these methods include such subjects as Teichmuller theory, topology and geometry of manifolds, geometric group theory, nonlinear geometric analysis, and nonsmooth calculus on manifolds. Quasiconformal mappings have recently begun to play a serious role in applied areas as well. These include fluid dynamics, elasticity, and even the analysis of nanostructures. This project focuses on the following fundamental question: When can a given geometry of a space be understood as a possibly highly distorted Euclidean geometry?
本课题主要研究黎曼流形的整体共形几何和非光滑流形的局部拟共形几何。问题和提出的方法产生于分析、几何和拓扑学。主要讨论了变形无穷小共形几何的映射的整体刚性现象和非光滑拟共形几何的自然局部参数化。在全局刚性问题的背景下,将引入超越非线性势理论范围的新方法,并探索拟共形流形上的新几何结构。拟共形方法在所有尺度上同时给出空间几何性质的信息。这些方法的根源在于复分析和复平面的几何。然而,这些方法既可以用于高维,也可以用于基于传统微积分的分析不可用的空间。这些方法的数学应用领域包括:Teichmuller理论、流形的拓扑与几何、几何群论、非线性几何分析、流形的非光滑微积分等。拟共形映射最近也开始在应用领域发挥重要作用。这些包括流体动力学、弹性学,甚至是纳米结构分析。该项目关注以下基本问题:什么时候空间的给定几何可以被理解为可能高度扭曲的欧几里得几何?
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Canary其他文献
The pressure metric for Anosov representations
- DOI:
10.1007/s00039-015-0333-8 - 发表时间:
2015-06-20 - 期刊:
- 影响因子:2.500
- 作者:
Martin Bridgeman;Richard Canary;François Labourie;Andres Sambarino - 通讯作者:
Andres Sambarino
A new foreword for Notes on Notes of Thurston
《瑟斯顿笔记笔记》的新前言
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Richard Canary - 通讯作者:
Richard Canary
Entropy rigidity for cusped Hitchin representations
尖点希钦表示的熵刚性
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Richard Canary;Tengren Zhang;Andrew M. Zimmer - 通讯作者:
Andrew M. Zimmer
Quasiconformal Homogeneity after Gehring and Palka
- DOI:
10.1007/s40315-014-0057-z - 发表时间:
2014-03-29 - 期刊:
- 影响因子:0.700
- 作者:
Petra Bonfert-Taylor;Richard Canary;Edward C. Taylor - 通讯作者:
Edward C. Taylor
Richard Canary的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Canary', 18)}}的其他基金
Deformation spaces of geometric structures
几何结构的变形空间
- 批准号:
2304636 - 财政年份:2023
- 资助金额:
$ 10.1万 - 项目类别:
Standard Grant
Conference: Midwest Research Experience for Graduates (MREG) 2023
会议:中西部毕业生研究经验 (MREG) 2023
- 批准号:
2317485 - 财政年份:2023
- 资助金额:
$ 10.1万 - 项目类别:
Standard Grant
Conference: I.H.E.S. Workshop: Homogeneous Dynamics and Geometry in Higher-Rank Lie Groups
会议:I.H.E.S.
- 批准号:
2321093 - 财政年份:2023
- 资助金额:
$ 10.1万 - 项目类别:
Standard Grant
Deformation Spaces of Geometric Structures
几何结构的变形空间
- 批准号:
1906441 - 财政年份:2019
- 资助金额:
$ 10.1万 - 项目类别:
Standard Grant
Workshop on Groups, Geometry and Dynamics
群、几何与动力学研讨会
- 批准号:
1825533 - 财政年份:2018
- 资助金额:
$ 10.1万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Geometric Structures on Higher Teichmuller Spaces
FRG:协作研究:更高 Teichmuller 空间上的几何结构
- 批准号:
1564362 - 财政年份:2016
- 资助金额:
$ 10.1万 - 项目类别:
Continuing Grant
Deformation spaces of geometric structures
几何结构的变形空间
- 批准号:
1306992 - 财政年份:2013
- 资助金额:
$ 10.1万 - 项目类别:
Standard Grant
Deformation spaces of hyperbolic 3-manifolds
双曲3流形的变形空间
- 批准号:
1006298 - 财政年份:2010
- 资助金额:
$ 10.1万 - 项目类别:
Standard Grant
Focused Research Group: Collaborative Research: Geometry and Deformation Theory of Hyperbolic 3-Manifolds
重点研究组:合作研究:双曲3流形的几何与变形理论
- 批准号:
0554239 - 财政年份:2006
- 资助金额:
$ 10.1万 - 项目类别:
Standard Grant
相似国自然基金
BE1(BRANCHED EAR1)介导的玉米雌穗分枝发育的分子机理
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Branched Amphiphilic Peptide Capsules (BAPCs) for the delivery of lethal dsRNA into invasive organisms
事业:分支两亲肽胶囊 (BAPC) 用于将致命的 dsRNA 传递到入侵生物体中
- 批准号:
2340070 - 财政年份:2024
- 资助金额:
$ 10.1万 - 项目类别:
Continuing Grant
Assembly of Novel Branched Ionic Polymers: Chirality Induction and 2D Heterostructures
新型支化离子聚合物的组装:手性感应和二维异质结构
- 批准号:
2404081 - 财政年份:2024
- 资助金额:
$ 10.1万 - 项目类别:
Standard Grant
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
- 批准号:
10728925 - 财政年份:2023
- 资助金额:
$ 10.1万 - 项目类别:
Modelling Ultrasonic Inspection of Branched Stress Corrosion Cracks using Machine Learning and AI
使用机器学习和人工智能对分支应力腐蚀裂纹进行超声波检测建模
- 批准号:
2889063 - 财政年份:2023
- 资助金额:
$ 10.1万 - 项目类别:
Studentship
Mechanisms linking the Branched-Chain alpha-Keto Acid regulatory network to the pathogenesis of NASH
支链 α-酮酸调节网络与 NASH 发病机制的联系机制
- 批准号:
10628663 - 财政年份:2023
- 资助金额:
$ 10.1万 - 项目类别:
Enzymology of Bacteroides short and branched chain fatty acid metabolism
拟杆菌短链和支链脂肪酸代谢的酶学
- 批准号:
10651505 - 财政年份:2023
- 资助金额:
$ 10.1万 - 项目类别:
Evaluating the role of branched chain amino acid transporters in Clostridium perfringens-induced gas gangrene in diabetic and normal mouse models
评估支链氨基酸转运蛋白在糖尿病和正常小鼠模型中产气荚膜梭菌诱导的气性坏疽中的作用
- 批准号:
10726306 - 财政年份:2023
- 资助金额:
$ 10.1万 - 项目类别:
Role of branched-chain amino acid catabolism in the proximal tubule
支链氨基酸分解代谢在近曲小管中的作用
- 批准号:
10657039 - 财政年份:2023
- 资助金额:
$ 10.1万 - 项目类别:
Branched-chain Keto-acids and Aerobic Glycolysis in Vascular Smooth Muscle Cells
血管平滑肌细胞中的支链酮酸和有氧糖酵解
- 批准号:
10731096 - 财政年份:2023
- 资助金额:
$ 10.1万 - 项目类别:
Insights into Degradable Branched Step-growth Polymers using Transfer-dominated Branching Radical Telomerisation
使用转移主导的支化自由基调聚对可降解支化逐步增长聚合物的见解
- 批准号:
EP/X010864/1 - 财政年份:2023
- 资助金额:
$ 10.1万 - 项目类别:
Research Grant