Conference on the Frames and Spaces of Ordered Algebraic Structures

有序代数结构的框架和空间会议

基本信息

  • 批准号:
    0554806
  • 负责人:
  • 金额:
    $ 0.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-03-01 至 2007-02-28
  • 项目状态:
    已结题

项目摘要

This conference is held at the University of Florida, from March 9th through the 11th, 2006. It is referred to as Ord06/UFThis conference is the ninth in a series initiated in 1998; theseconferences have involved some aspect of Ordered Algebraic Structures. Ord06/UF concentrates on the role of frame theory in the subject. Ord06/UF, like its predecessors in the series, brings together 25 to 30 mathematicians from various parts of the globe, including graduate students and those who have recently received their PhD degrees. A published proceedings of Ord06/UF is planned. For as long as there has been academic training of mathematicians, research and instruction have sought to abstract as a means towards understanding of the concrete and the particular. Thus, the arithmetical properties of numbers became abstracted to the theory of groups and rings, these being algebraic constructs invented to ``explain'' why the real numbers, for example, behave the way they do. Another school of researchers seized upon the geometric notion of distance between numbers or points in space to develop the abstract concept of a topological space, which establishesa sense of proximity without measurement of distance. In both of these generalizations the aim has consistently been to capture a greater catalogue of phenomena by the act of abstraction, and not to create an esoteric replica of the instance that prompted the abstraction. In this spirit the Ordered Algebraic Structurist has taken the natural ordering of real numbers, together with its arithmetical and topological aspects, and developed the lattice-ordered group and ring. The contributors to Ord06/UF, broadly, have in common an interest in how a lattice-ordered group may best be described by functions which take on most of their values in the real numbers, and in which features of the construct are carried over to the algebra of functions. In this tracking of properties, topological spaces and their generalization to frames have increasingly played an important role. The notion of an algebraic frame, in particular, has a dual identity, enabling one to simultaneously capture topological and arithmetical properties, and, moreover, how one set of properties influences the other.
本次会议于2006年3月9日至11日在佛罗里达大学举行。 它被称为Ord 06/UF本次会议是在1998年发起的一系列的第九次; thesconference已涉及有序代数结构的某些方面。Ord 06/UF专注于框架理论在主题中的作用。Ord 06/UF,像它的前辈在该系列,汇集了25至30名数学家从不同的地方地球仪,包括研究生和那些谁最近获得了博士学位。计划出版Ord 06/UF的会议记录。只要有数学家的学术培训,研究和教学都试图抽象作为理解具体和特殊的一种手段。因此,数的算术性质被抽象到群和环的理论中,这些代数结构被发明来“解释”为什么真实的数会有这样的行为。另一派研究人员抓住了空间中数或点之间距离的几何概念,发展了拓扑空间的抽象概念,它建立了一种不测量距离的邻近感。在这两种概括中,目标始终是通过抽象行为捕获更大的现象目录,而不是创建促使抽象的实例的深奥复制品。在这种精神下,有序代数结构主义者采用了真实的数的自然排序,以及它的算术和拓扑方面,并发展了格序群和环。Ord 06/UF的贡献者,广泛地说,有一个共同的兴趣,即如何最好地描述一个格序群的函数,这些函数的大部分值都是真实的数,并且该结构的特征被转移到函数的代数中。在这种性质的追踪中,拓扑空间及其对框架的推广越来越发挥重要作用。特别是代数框架的概念具有双重身份,使一个概念能够同时捕捉拓扑和算术性质,而且,一组性质如何影响另一组性质。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jorge Martinez其他文献

Echo: a middleware architecture for domain-specific UI test automation
Echo:用于特定领域 UI 测试自动化的中间件架构
Splenic Lymphoma with Cerebellar Involvement in an African Hedgehog (<em>Atelerix albiventris</em>)
  • DOI:
    10.1053/j.jepm.2012.06.020
  • 发表时间:
    2012-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ares Burballa;Jorge Martinez;Jaime Martorell
  • 通讯作者:
    Jaime Martorell
Maximum monoreflections
  • DOI:
    10.1007/bf00873037
  • 发表时间:
    1994-12-01
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Anthony W. Hager;Jorge Martinez
  • 通讯作者:
    Jorge Martinez
End-to-end latency characterization of task communication models for automotive systems
汽车系统任务通信模型的端到端延迟表征
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Jorge Martinez;Ignacio Sañudo;M. Bertogna
  • 通讯作者:
    M. Bertogna
Evaluating Invasive EEG Implantations in Medically Refractory Epilepsy with Functional Scalp EEG Recordings and Structural Imaging Data
利用功能性头皮脑电图记录和结构成像数据评估医学难治性癫痫的侵入性脑电图植入
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anil Palepu;Adam Li;Zachary Fitzgerald;Katherine Hu;Julia Costacurta;Juan Bulacio;Jorge Martinez;S. Sarma
  • 通讯作者:
    S. Sarma

Jorge Martinez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jorge Martinez', 18)}}的其他基金

Conference on Lattice-Ordered Groups and f-Rings; Gainesville, FL; March 3-6, 2004
格序群和 f 环会议;
  • 批准号:
    0400419
  • 财政年份:
    2004
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Standard Grant
Workshop/Conference on Representation Theory of Groups and Finite-Dimensional Algebras; August 4-13, 1993 Curacao, Netherlands Antilles
群和有限维代数表示论研讨会/会议;
  • 批准号:
    9300970
  • 财政年份:
    1993
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Standard Grant
Workshop/Conference on Semigroups of Operators and Applications; Curacao, Netherlands Antilles; August 5-14, 1992
关于算子和应用半群的研讨会/会议;
  • 批准号:
    9203921
  • 财政年份:
    1992
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Standard Grant
Workshop on Semigroups of Positive Operators; Curacao, Netherlands Antilles, June 17-29
正算子半群研讨会;
  • 批准号:
    8918909
  • 财政年份:
    1990
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Workshop-Conference in Ordered Algebraic Structures
数学科学:有序代数结构研讨会
  • 批准号:
    8802636
  • 财政年份:
    1988
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Standard Grant
Extension Theory of Lattice-Ordered Groups Through Torsion Classes
通过挠率类的格序群的可拓理论
  • 批准号:
    7802036
  • 财政年份:
    1978
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Standard Grant
Extension Theory of Lattice-Ordered Groups Through Torsion Classes
通过挠率类的格序群的可拓理论
  • 批准号:
    7605970
  • 财政年份:
    1976
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Standard Grant

相似海外基金

Analysis and design of building frames using machine learning considering uncertainty of parameters
考虑参数不确定性的利用机器学习的建筑框架分析与设计
  • 批准号:
    23K04104
  • 财政年份:
    2023
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Rapid evaluation of structural soundness of steel frames using a coupling coefficient (CC)-based method
使用基于耦合系数 (CC) 的方法快速评估钢框架的结构稳定性
  • 批准号:
    22KF0221
  • 财政年份:
    2023
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Analysis, Design and System-Level Performance of Repairable Precast Concrete Buckling-Restrained Braced Frames under Seismic Loads
地震荷载下可修复预制混凝土屈曲约束支撑框架的分析、设计和系统级性能
  • 批准号:
    2230187
  • 财政年份:
    2023
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Standard Grant
Quantum mechanics in rotating reference frames
旋转参考系中的量子力学
  • 批准号:
    2888161
  • 财政年份:
    2023
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Studentship
Investigation of torsional performance characteristics of unreinforced masonry infill walls in reinforced concrete frames
钢筋混凝土框架内无筋砌体填充墙扭转性能特性研究
  • 批准号:
    23K13440
  • 财政年份:
    2023
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Construction of design methodology for flexible legged locomotion robots based on optimal fusion of rigid body frames and viscoelastic elements
基于刚体框架与粘弹性元件优化融合的柔性足式运动机器人设计方法构建
  • 批准号:
    23K03727
  • 财政年份:
    2023
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Therapeutic rescue of Polycystin-1 protein expression by targeting PKD1 upstream open reading frames
通过靶向 PKD1 上游开放阅读框来治疗性挽救 Polycystin-1 蛋白表达
  • 批准号:
    10575251
  • 财政年份:
    2023
  • 资助金额:
    $ 0.5万
  • 项目类别:
Poxvirus-encoded noncanonical open reading frames
痘病毒编码的非规范开放阅读框
  • 批准号:
    10725671
  • 财政年份:
    2023
  • 资助金额:
    $ 0.5万
  • 项目类别:
Trajectories of Anti-Poverty Movements Mapped from Frames and Coalitions -Social Movement Research on Policy Output-
从框架和联盟映射反贫困运动的轨迹 -政策输出的社会运动研究-
  • 批准号:
    22KJ1011
  • 财政年份:
    2023
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Frames as dictionaries in inverse problems: Recovery guarantees for structured sparsity, unstructured environments, and symmetry-group identification
逆问题中的框架作为字典:结构化稀疏性、非结构化环境和对称群识别的恢复保证
  • 批准号:
    2308152
  • 财政年份:
    2023
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了