Intersections of special cycles on Shimura varieties
志村品种特殊周期的交点
基本信息
- 批准号:0556174
- 负责人:
- 金额:$ 8.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-06-01 至 2009-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0556174Benjamin HowardThe principal investigator is studying generalizations of the Gross-Zagier theorem, relating intersection multiplicities of special cycles on Shimura varieties to central values and central derivatives ofautomorphic $L$-functions. The original theorem of Gross and Zagier expresses the arithmetic intersections of complex multiplication points on modular curves in terms of Fourier coefficients of a certain explicit modular form. Gross and Zagier use this to deduce a relation between the Neron-Tate heights of Heegner points on modular Jacobians and derivatives of L-functions. Results and conjectures of Borcherds, Gross-Kudla, Hirzebruch-Zagier, Kudla-Rappoport-Yang, and Zhang suggest that the Gross-Zagier theorem is merely the simplest cases of a much broader theory relating arithmetic intersections of special cycles on Shimura varieties to Fourier coefficients of modular forms. Such a theory would yield results toward generalized forms of the Birch and Swinnerton-Dyer conjecture, e.g. the Bloch-Kato conjectures. Toward this end, the principal investigator is studying two generalized forms of the Gross-Zagier theorem. The first project is to extend the original Gross-Zagier theorem to include intersections of special points on modular curves with additional level structure. Such a result would yield new cases of the Birch and Swinnerton-Dyer conjecture for abelian varieties attached to modular forms with nontrivial nebentype. The second project is a part of a vast series of conjectures of Kudla concerning the arithmetic intersections of special cycles on Shimura varieties of orthogonal type. The case of interest to the principal investigator involves the computation of intersection multiplicities on a class of Shimura surfaces which includes the classical Hilbert modular surfaces, and the comparison of these intersection multiplicities with Fourier coefficients of automorphic forms.In the field of arithmetic geometry certain there are certain curves, surfaces, and higher dimension analogs which play a central role. These objects are called Shimura varieties, and are interesting at least in part because they encode arithmetic information (i.e. properties of the integers and rational numbers) in a geometric form. These Shimura varieties contain inside them many interesting objects of lower dimensions. For example the one-dimensional Shimura varieties come equipped with a family of special points, the two-dimensional Shimura varieties come equipped with both special points and special curves on the surface, three-dimensional Shimura varieties have special points, curves, and surfaces inside them, and so on. One way in which the geometry of these objects encodes arithmetic information is through ntersection theory. If, for example, one takes a Shimura surface and two special curves lying on the surface, then one may simply count the number of times that the two curves intersect one another. Work of Hirzebruch and Zagier, dating back to the 1970's, shows that these geometrically defined intersection numbers agree with sequences of numbers arising in arithmetic. This connection between geometry and arithmetic was later exploited by Gross and Zagier to prove fundamental results about elliptic curves, objects of great importance both in pure math (e.g. to the proof of Fermat's last theorem) and in cryptography. The principal investigator is working to extend some of the theory to higher dimensions by computing the intersection numbers of a surface with a family of curves, all inside of a three-dimensional Shimura variety, and comparing these with numbers arising from arithmetic. The principal investigator expects that this will lead to proofs of special cases of some long-standing and important conjectures in number theory.
DMS-0556174 Benjamin Howard主要研究员正在研究Gross-Zagier定理的推广,将Shimura簇上特殊循环的交叉多重性与自守$L$-函数的中心值和中心导数联系起来。 Gross和Zagier的原始定理将模曲线上的复数乘法点的算术交表示为某种显式模形式的傅里叶系数。 格罗斯和扎吉尔利用这一点来推导出模块雅可比矩阵上的Heegner点的Neron-Tate高度与L-函数的导数之间的关系。 Borcherds,Gross-Kudla,Hirzebruch-Zagier,Kudla-Rappoport-Yang和Zhang的结果和插图表明,Gross-Zagier定理仅仅是一个更广泛的理论的最简单的情况下,有关特殊圈的算术交叉志村品种的傅立叶系数的模形式。 这样的理论将产生伯奇和斯温纳顿-戴尔猜想的推广形式的结果,例如布洛赫-加藤猜想。为此,首席研究员正在研究格罗斯-扎吉尔定理的两种推广形式。 第一个项目是扩展原来的Gross-Zagier定理,包括特殊点的模曲线与额外的水平结构的交点。 这样的结果将产生新的情况下,伯奇和Swinnerton-Dyer猜想的阿贝尔品种附加到模形式与非平凡nevarious nevarious型。 第二个项目是一个庞大的系列的一部分,关于算术交叉的特殊周期的Kudla aptures志村品种的正交型。 感兴趣的情况下,主要研究人员涉及计算交叉多重性一类志村表面,其中包括经典的希尔伯特模块化的表面,并比较这些交叉多重性与傅立叶系数的自守形式。在算术几何领域的某些有一定的曲线,曲面,和高维类似物发挥了核心作用。 这些对象被称为志村变种,并且至少部分地因为它们以几何形式编码算术信息(即整数和有理数的属性)而有趣。 这些志村品种包含在他们内部许多有趣的对象较低的维度。 例如,一维的志村变种配备了一族特殊点,二维的志村变种配备了表面上的特殊点和特殊曲线,三维的志村变种内部有特殊点、曲线和表面,等等。这些对象的几何编码算术信息的一种方式是通过相交理论。 例如,如果取一个Shimura曲面和两条位于该曲面上的特殊曲线,则可以简单地计算这两条曲线相交的次数。 Hirzebruch和Zagier的工作可以追溯到20世纪70年代,表明这些几何定义的交叉数与算术中出现的数字序列一致。 几何和算术之间的这种联系后来被格罗斯和扎吉尔用来证明椭圆曲线的基本结果,椭圆曲线在纯数学(例如费马最后定理的证明)和密码学中都具有重要意义。 主要研究人员正在努力将一些理论扩展到更高的维度,通过计算曲面与一系列曲线的交叉数,所有这些都在三维志村品种内,并将这些与算术产生的数字进行比较。 首席研究员期望这将导致一些长期存在的数论重要命题的特殊情况的证明。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Howard其他文献
Central derivatives of L-functions in Hida families
- DOI:
10.1007/s00208-007-0131-1 - 发表时间:
2007-06-29 - 期刊:
- 影响因子:1.400
- 作者:
Benjamin Howard - 通讯作者:
Benjamin Howard
Efficient Unbiased Sparsification
高效无偏稀疏化
- DOI:
10.48550/arxiv.2402.14925 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Leighton Barnes;Timothy Chow;Emma Cohen;Keith Frankston;Benjamin Howard;Fred Kochman;Daniel Scheinerman;Jeffrey VanderKam - 通讯作者:
Jeffrey VanderKam
THE INSTRUMENTATION DILEMMA: A COMPARISON OF PAIRED LA-ICP-MS AND ID-TIMS U-PB DATES FROM ZIRCON
仪器困境:来自 ZIRCON 的配对 LA-ICP-MS 和 ID-TIMS U-PB 日期的比较
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Benjamin Howard;G. Sharman;J. Crowley;Ellen Reat Wersan - 通讯作者:
Ellen Reat Wersan
Sequence and annotation of the Wizard007 mycobacterium phage genome
Wizard007分枝杆菌噬菌体基因组的序列和注释
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:3
- 作者:
E. Anyanwu;K. Cole;K. Driver;A. Falcone;Elizabeth Farnsworth;Benjamin Howard;Brittney Howard;Courtney Howard;R. King;Jordan Olberding;M. Perkins;C. Rinehart;Heidi Sayre;Tyler Scaff;Sarah M Schrader;P. Parthasarathy;C. Tope - 通讯作者:
C. Tope
Heights of Kudla–Rapoport divisors and derivatives of $$L$$ -functions
- DOI:
10.1007/s00222-014-0545-9 - 发表时间:
2014-09-24 - 期刊:
- 影响因子:3.600
- 作者:
Jan Hendrik Bruinier;Benjamin Howard;Tonghai Yang - 通讯作者:
Tonghai Yang
Benjamin Howard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Howard', 18)}}的其他基金
Higher Codimension Cycles on Shimura Varieties
志村品种的更高维数循环
- 批准号:
2101636 - 财政年份:2021
- 资助金额:
$ 8.57万 - 项目类别:
Standard Grant
Arithmetic of Shimura Varieties and Applications
志村品种的计算及应用
- 批准号:
1501583 - 财政年份:2015
- 资助金额:
$ 8.57万 - 项目类别:
Standard Grant
Height pairings on unitary and orthogonal Shimura varieties
单一和正交志村品种的高度配对
- 批准号:
1201480 - 财政年份:2012
- 资助金额:
$ 8.57万 - 项目类别:
Standard Grant
Intersections of Hirzebruch-Zagier divisors
Hirzebruch-Zagier 因子的交点
- 批准号:
0901753 - 财政年份:2009
- 资助金额:
$ 8.57万 - 项目类别:
Standard Grant
相似国自然基金
一类特殊Abelian群的子群计数问题
- 批准号:12301006
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
数学物理中精确可解模型的代数方法
- 批准号:11771015
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
到Heisenberg群上的次调和映照及其在Lagrangian几何中的应用
- 批准号:10801073
- 批准年份:2008
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
非阶化Hamiltonial型和Special型李代数的表示
- 批准号:10701002
- 批准年份:2007
- 资助金额:15.0 万元
- 项目类别:青年科学基金项目
与平均曲率有关的非线性椭圆方程
- 批准号:10671022
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:面上项目
几何中的非线性偏微分方程
- 批准号:10371011
- 批准年份:2003
- 资助金额:18.0 万元
- 项目类别:面上项目
相似海外基金
Special cycles on moduli spaces of G-shtukas (A03)
G-shtukas 模空间上的特殊循环 (A03)
- 批准号:
444016377 - 财政年份:2020
- 资助金额:
$ 8.57万 - 项目类别:
Collaborative Research Centres
L-Values, Special Cycles, and Euler Systems
L 值、特殊循环和欧拉系统
- 批准号:
1901985 - 财政年份:2019
- 资助金额:
$ 8.57万 - 项目类别:
Continuing Grant
Probabilistic analysis of damage accumulation with special regard to building structures stressed by collectives with higher number of cycles
损伤累积的概率分析,特别是受循环次数较多的集体应力的建筑结构
- 批准号:
252979423 - 财政年份:2014
- 资助金额:
$ 8.57万 - 项目类别:
Research Grants
Special Cycles on Shimura Varieties and Derivative of L-Series
志村品种和 L 系列衍生品的特殊循环
- 批准号:
0855901 - 财政年份:2009
- 资助金额:
$ 8.57万 - 项目类别:
Continuing Grant
Recent development of special functins … an approach from the representation thery and the complex integrals
特殊函数的最新发展……一种来自表示和复积分的方法
- 批准号:
15340003 - 财政年份:2003
- 资助金额:
$ 8.57万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Special values of L-functions of modular diagonal quotient surfaces and algebraic cycles
模对角商曲面和代数循环的 L 函数的特殊值
- 批准号:
241746-2001 - 财政年份:2003
- 资助金额:
$ 8.57万 - 项目类别:
Postdoctoral Fellowships
Special values of L-functions of modular diagonal quotient surfaces and algebraic cycles
模对角商曲面和代数循环的 L 函数的特殊值
- 批准号:
241746-2001 - 财政年份:2002
- 资助金额:
$ 8.57万 - 项目类别:
Postdoctoral Fellowships
Special values of L-functions of modular diagonal quotient surfaces and algebraic cycles
模对角商曲面和代数循环的 L 函数的特殊值
- 批准号:
241746-2001 - 财政年份:2001
- 资助金额:
$ 8.57万 - 项目类别:
Postdoctoral Fellowships
Arithmetic Special Cycles and Derivatives of L-functions
L 函数的算术特殊循环和导数
- 批准号:
9970506 - 财政年份:1999
- 资助金额:
$ 8.57万 - 项目类别:
Continuing Grant
STUDY ON THE SUSTAINABLE OYSTER CULTURE IN HIROSHIMA BAY WITH SPECIAL REFERENCE TO THE ROLE OF OYSTER CULTURE ON NITROGEN AND PHOSPHORUS CYCLES
广岛湾可持续牡蛎养殖研究,特别是牡蛎养殖对氮磷循环的作用
- 批准号:
07456089 - 财政年份:1995
- 资助金额:
$ 8.57万 - 项目类别:
Grant-in-Aid for Scientific Research (B)