Statistical and geometric properties of dynamical systems

动力系统的统计和几何特性

基本信息

  • 批准号:
    0600927
  • 负责人:
  • 金额:
    $ 30.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-07-01 至 2010-06-30
  • 项目状态:
    已结题

项目摘要

Abstract proposal DMS-0600927The project primarily deals with statistical and geometric properties of smooth dynamical systems, especially non-uniformly hyperbolic maps and flows. There are several interrelated topics in the proposal. A top priority is the extension of our understanding of statistical properties, such as the large deviation principle and the almost sure invariance principle for vector valued observables, to non-uniformly hyperbolic systems, in particular those modeled by a Young Tower.As part of this program, the investigators will study the regularity of group-valued measurable solutions to sub-cohomological equations and the implications of such regularity for optimal periodic orbits (periodic orbits on which Birkhoff averages of an observable are optimized). Geometric methods play an important role in the proposal.Recently, the investigators obtained results on the Whitney regularity of measurable solutions to cohomological equations on dynamically defined Cantor sets and it is proposed to extend this work to higher dimensions. The theory of equivariant transversality will be extended and applied to Hamiltonian and reversible systems, a setting important for applications. Finally, it is proposed to continue with the development and application of new methods for the analysis of mixing for hyperbolic flows. The investigators have already developed new invariants leading to a proof that every smooth hyperbolic flow can be approximated by a stably (rapid) mixing flow. It is proposed to pursue this investigation to obtain an improved understanding of exponential mixing for hyperbolic flows a topic of considerable significance in physics.Many physical systems, even those modeled accurately by deterministic differential equations, often behave in an apparently random and unpredictable way -- the phenomenon of deterministic chaos. Examples range from weather systems and fluid turbulence to electronic circuits and animal populations. Chaotic or complex systems of this type are often best understood in terms of the statistical properties of observations on the system. Complex systems may possess extra geometric structure, such as reversing symmetries or energy conservation, which can alter the expected properties of the physical system as well as provide a means for understanding the system. The proposal aims to deepen our understanding of complex systems, by investigating their statistical properties and exploiting new geometric methods to study their behavior. Results of the research will be broadly disseminated in the scientific literature and in lectures. The research will also contribute to the mathematical education of graduate students at the University of Houston, in part by lectures of the investigators, and in part by students working on this and related subjects under their guidance.
该项目主要研究光滑动力系统的统计和几何性质,特别是非一致双曲映射和流。提案中有几个相互关联的主题。当务之急是将我们对统计性质的理解扩展到非一致双曲型系统,特别是那些由Young Tower建模的非一致双曲型系统。作为该计划的一部分,研究人员将研究次上同调方程的群值可测解的正则性,以及这种正则性对最优周期轨道(可观量的Birkhoff平均在其上被优化的周期轨道)的影响。最近,研究人员在动态定义的Cantor集上上同调方程的可测解的Whitney正则性方面得到了一些结果,并提出将这一工作扩展到更高维。等变横截性理论将被推广并应用于哈密顿和可逆系统,这是一个重要的应用背景。最后,建议继续开发和应用分析双曲型流动混合的新方法。研究人员已经开发出了新的不变量,从而证明了每一种光滑的双曲线流都可以被稳定(快速)的混合流近似。这项研究的目的是为了更好地理解双曲流的指数混合,这是一个在物理学中具有相当重要意义的话题。许多物理系统,甚至是那些用确定性微分方程精确建模的物理系统,往往表现出一种明显的随机和不可预测的方式--确定性混沌现象。例子从天气系统和流体湍流到电子线路和动物种群。这种类型的混沌或复杂系统通常最好地根据系统上观测的统计特性来理解。复杂系统可能具有额外的几何结构,如逆对称或能量守恒,这可以改变物理系统的预期属性,并提供一种理解系统的手段。该提案旨在通过研究复杂系统的统计特性和开发新的几何方法来研究它们的行为,以加深我们对复杂系统的理解。研究结果将在科学文献和讲座中广泛传播。这项研究还将有助于休斯顿大学研究生的数学教育,部分是通过研究人员的讲座,部分是通过在他们的指导下从事这一学科和相关学科的学生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Field其他文献

Genome-wide association study identifies novel breast cancer susceptibility
全基因组关联研究确定了新的乳腺癌易感性
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Easton;K. Pooley;A. Dunning;Paul D. P. Pharoah;D. Thompson;D. Ballinger;Jeff P Struewing;J. Morrison;Helen Field;Robert Luben;N. Wareham;Shahana Ahmed;C. Healey;Richard Bowman;Kerstin B. Meyer;C. Haiman;Laurence Kolonel;B. E. Henderson;L. Marchand;Paul Brennan;S. Sangrajrang;V. Gaborieau;F. Odefrey;Chen;Pei‐Ei Wu;Hui;D. Eccles;D. Evans;Julian Peto;O. Fletcher;N. Johnson;S. Seal;Michael R. Stratton;Nazneen Rahman;G. Chenevix;S. Bojesen;B. Nordestgaard;C. K. Axelsson;M. García;L. Brinton;S. Chanock;J. Lissowska;B. Pepłońska;H. Nevanlinna;R. Fagerholm;H. Eerola;Daehee Kang;K. Yoo;Dong;Se;D. J. Hunter;S. Hankinson;David G. Cox;S. Wedrén;Jianjun Liu;Yen Ling Low;N. Bogdanova;Peter Schürmann;T. Dörk;R. Tollenaar;C. Jacobi;P. Devilee;J. Klijn;A. Sigurdson;M. Doody;Bruce H. Alexander;Jinghui Zhang;Angela Cox;I. Brock;Gordon MacPherson;M. W. Reed;F. Couch;E. Goode;J. Olson;H. Meijers;A. V. D. Ouweland;A. Uitterlinden;F. Rivadeneira;R. Milne;Gloria Ribas;A. González;Javier Benítez;J. Hopper;Margaret McCredie;Melissa S Southey;G. Giles;C. P. G. H. Schroen;Christina Justenhoven;H. Brauch;U. Hamann;Y. Ko;A. Spurdle;J. Beesley;Xiaoqing Chen;A. Group;A. Mannermaa;V. Kosma;V. Kataja;Jaana M. Hartikainen;Nicholas E. Day;David R Cox;B. A. Ponder;C. Luccarini;Don M. Conroy;M. Shah;Hannah Munday;C. Jordan;B. Perkins;Judy West;Karen Redman;K. Driver;The Search;D. Amor;Lesley Andrews;Y. Antill;J. Armes;Shane Armitage;Leanne Arnold;Rosemary L. Balleine;Glenn Begley;John A. Beilby;Ian Bennett;Barbara Bennett;Geoffrey Berry;Anneke Blackburn;Meagan Brennan;Melissa Brown;Michael Buckley;J. Burke;Phyllis N. Butow;Keith Byron;David F. Callen;Ian Campbell;Christine L. Clarke;Alison Colley;Dick Cotton;Jisheng Cui;Bronwyn Culling;Margaret Cummings;Sarah;J. Dixon;Alexander Dobrovic;Tracy Dudding;Ted Edkins;M. Eisenbruch;G. Farshid;Susan Fawcett;Michael Field;F. Firgaira;Jean Fleming;John F Forbes;Michael Friedlander;Clara Gaff;Mac Gardner;M. Gattas;Peter George;G. Gill;Jack Goldblatt;Sian Greening;S. Grist;Eric Haan;Marion Harris;Stewart Hart;N. Hayward;Evelyn Humphrey;Mark A. Jenkins;Alison Jones;R. Kefford;Judy Kirk;James Kollias;Sergey Kovalenko;S. Lakhani;Jennifer Leary;Jacqueline Lim;Geoff Lindeman;Lara Lipton;Lizz Lobb;Mariette Maclurcan;G. Bruce Mann;Deb Marsh;Michael McKay;Sue;Bettina Meiser;Gillian Mitchell;Beth Newman;Imelda O’Loughlin;Richard Osborne;Lester Peters;K. Phillips;Melanie Price;Jeanne Reeve;Tony Reeve;Robert Richards;Gina Rinehart;Bridget Robinson;Barney Rudzki;Elizabeth Salisbury;J. Sambrook;Christobel Saunders;C. Scott;Elizabeth Scott;Rodney J. Scott;R. Seshadri;Andrew Shelling;Graeme Suthers;Donna Taylor;Christopher Tennant;Heather Thorne;S. Townshend;Kathy Tucker;Janet Tyler;D. Venter;J. Visvader;Ian Walpole;Robin Ward;Paul Waring;Bev Warner;Graham Warren;Elizabeth Watson;Rachael Williams;Judy Wilson;Ingrid Winship;M. A. Young;D. Bowtell;Adele Green;87 AnnadeFazio;D. Gertig;P. Webb
  • 通讯作者:
    P. Webb
463: EPSTEIN BARR VIRUS (EBV) EXPOSURE PRECEDES CROHN'S DISEASE DEVELOPMENT
  • DOI:
    10.1016/s0016-5085(22)60262-2
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Anubhab Nandy;Francesca Petralia;Joana Torres;Michael Field;William A. Dunn;Tomasz Kula;Evida Dennis-Heyward;Williams Turpin;Sun-Ho Lee;Ryan Kelly;Katherine Freer;Tamar Parmet;Sydney Whitcomb;Rajsavi S. Anand;Pei Wang;Bruce Horwitz;Stephen Elledge;Kenneth Croitoru;Chad K. Porter;Renee M. Laird
  • 通讯作者:
    Renee M. Laird
Dipeptide Transport Across the Intestinal Brush Border
二肽跨肠刷状缘转运
  • DOI:
    10.1203/00006450-197009000-00168
  • 发表时间:
    1970-09-01
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Armido Rubino;Michael Field;Harry Shwachman
  • 通讯作者:
    Harry Shwachman
317 CYTOF ANALYSIS OF HUMAN COLON AND BLOOD REVEALS DISTINCT IMMUNE SIGNATURES OF ULCERATIVE COLITIS AND CROHN'S DISEASE
  • DOI:
    10.1016/s0016-5085(20)30824-6
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Vanessa Mitsialis;Sarah Wall;Peng Liu;Jose Ordovas-Montanes;Tamar Parmet;Michael Field;Collin McCourt;Jessica Toothaker;Jeffrey D. Goldsmith;Leslie Kean;Alex Shalek;George Tseng;Liza Konnikova;Scott B. Snapper
  • 通讯作者:
    Scott B. Snapper
Su500 CLINICAL PHENOTYPES, MOLECULAR ANALYSIS, AND OUTCOMES IN VERY EARLY ONSET INFLAMMATORY BOWEL DISEASE
  • DOI:
    10.1016/s0016-5085(21)02422-7
  • 发表时间:
    2021-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lauren Collen;David Kim;Michael Field;Ibeawuchi Okoroafor;Sydney Whitcomb;Julia Green;Gwen Saccocia;Michelle D. Dong;Madison Weatherly;Bridget Carey;Leslie Grushkin-Lerner;Vanessa Mitsialis;Athos Bousvaros;Jodie Ouahed;Scott B. Snapper
  • 通讯作者:
    Scott B. Snapper

Michael Field的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Field', 18)}}的其他基金

Dynamics of Asynchronous Networks, Adaptation and Visualization
异步网络的动态、适应和可视化
  • 批准号:
    1210262
  • 财政年份:
    2012
  • 资助金额:
    $ 30.74万
  • 项目类别:
    Standard Grant
Dynamics of Coupled Cell Systems
耦合细胞系统动力学
  • 批准号:
    0806321
  • 财政年份:
    2008
  • 资助金额:
    $ 30.74万
  • 项目类别:
    Continuing Grant

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
对RS和AG码新型软判决代数译码的研究
  • 批准号:
    61671486
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
Ginzburg-Landau 型发展方程的拓扑缺陷以及相关问题研究
  • 批准号:
    11071206
  • 批准年份:
    2010
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
Bose-Einstein凝聚、超导G-L模型以及相关问题研究
  • 批准号:
    10771181
  • 批准年份:
    2007
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

Understanding of physical properties on carbon networks with unique geometric structures
了解具有独特几何结构的碳网络的物理特性
  • 批准号:
    23K17661
  • 财政年份:
    2023
  • 资助金额:
    $ 30.74万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
The geometric and algebraic properties of 4-manifolds
4-流形的几何和代数性质
  • 批准号:
    2891032
  • 财政年份:
    2023
  • 资助金额:
    $ 30.74万
  • 项目类别:
    Studentship
Complex Geometric Properties of Period Maps
周期图的复杂几何性质
  • 批准号:
    2304981
  • 财政年份:
    2023
  • 资助金额:
    $ 30.74万
  • 项目类别:
    Standard Grant
Renewed bone remodeling after pausing long-term bisphosphonate use: Does it replace regions of impaired bone quality and restore mechanical integrity?
暂停长期使用双膦酸盐后重新进行骨重塑:它是否可以替代骨质量受损的区域并恢复机械完整性?
  • 批准号:
    10656954
  • 财政年份:
    2023
  • 资助金额:
    $ 30.74万
  • 项目类别:
Spectroscopic and Mechanistic Characterization of Novel DNAzymes Selective for Redox-active Metal Ions
选择性氧化还原活性金属离子的新型 DNAzyme 的光谱和机理表征
  • 批准号:
    10538382
  • 财政年份:
    2022
  • 资助金额:
    $ 30.74万
  • 项目类别:
Geometric properties of the mapping class group
映射类组的几何属性
  • 批准号:
    546076-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 30.74万
  • 项目类别:
    Postdoctoral Fellowships
Spectroscopic and Mechanistic Characterization of Novel DNAzymes Selective for Redox-active Metal Ions
选择性氧化还原活性金属离子的新型 DNAzyme 的光谱和机理表征
  • 批准号:
    10705609
  • 财政年份:
    2022
  • 资助金额:
    $ 30.74万
  • 项目类别:
Chemical Approaches to Studying the Mechanisms and Biophysical Properties of Complex Metallocofactors
研究复杂金属辅因子的机制和生物物理性质的化学方法
  • 批准号:
    10798896
  • 财政年份:
    2022
  • 资助金额:
    $ 30.74万
  • 项目类别:
Chemical Approaches to Studying the Mechanisms and Biophysical Properties of Complex Metallocofactors
研究复杂金属辅因子的机制和生物物理性质的化学方法
  • 批准号:
    10590756
  • 财政年份:
    2022
  • 资助金额:
    $ 30.74万
  • 项目类别:
Geometric quantization and metrics with special curvature properties
几何量化和具有特殊曲率特性的度量
  • 批准号:
    RGPIN-2020-04683
  • 财政年份:
    2022
  • 资助金额:
    $ 30.74万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了