Geometric and Probabilistic Problems from Low Dimensional Gauge Theories

低维规范理论的几何和概率问题

基本信息

  • 批准号:
    0601141
  • 负责人:
  • 金额:
    $ 12.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-06-01 至 2011-05-31
  • 项目状态:
    已结题

项目摘要

This project is devoted to mathematical problems arising from quantum physics, in particular from the study of forces between the fundamental constituents of matter. The fields of interest for this project include Yang-Mills fields, which mediate interaction between fundamental particles of nature. These fields are modeled mathematically by the geometric notion of connections. These are fundamental to the study of both gravitation and the interactions of elementary particles of nature. The quantum behavior of such fields is described mathematically in terms of functional integrals. Investigations, begun in large part through the work of G. "t Hooft in the early 1970s, have found a wealth of deeper structures and ideas in the behavior of such integrals when the physical field's symmetry size, described by a number N, is large. One direction being proposed in the project is the development of a mathematically complete description of this large-N 'master field.' An area known as free probability theory is expected to play a central role here. Other directions, involving generally the same areas of mathematics, will also be pursued.The project aims to discover new mathematical results and structures, such as a generalized geometry arising from the limiting large-N theory, which are inspired by physical theories. The mathematical contexts range from differential geometry to stochastics and large random matrices. The research work on this project is expected to have a positive impact on graduate and undergraduate education through seminars and lectures to be arranged in the course of the project. The project would involve international research collaboration. In a broader intellectual plane, the project would produce a fruitful combination of ideas from the frontiers of physics and mathematics.
这个项目致力于数学 量子物理学中出现的问题,特别是研究物质基本成分之间的力。该项目感兴趣的领域包括杨米尔斯领域, 自然界基本粒子之间的相互作用这些领域的数学模型的几何概念的连接。这些都是研究引力和 自然界基本粒子的相互作用。这种场的量子行为在数学上用以下术语描述: 泛函积分 调查,开始在很大程度上通过工作的G。t Hooft等人在20世纪70年代早期,在这类积分的行为中发现了丰富的更深层次的结构和思想 当物理场的对称尺寸(用数字N来描述)很大时。该项目提出的一个方向是发展一个数学上完整的描述这个大N '主字段。“一个被称为自由概率论的领域预计将在这里发挥核心作用。本项目的目标是发现新的数学结果和结构,例如受物理学理论启发的由极限大N理论产生的广义几何。数学内容从微分几何到随机和大型随机矩阵。 该项目的研究工作预计将通过在项目过程中安排的研讨会和讲座对研究生和本科生教育产生积极影响。的 该项目将涉及国际研究合作。中 在更广阔的智力领域,该项目将产生一个富有成效的结合思想从前沿的物理学和数学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ambar Sengupta其他文献

The semiclassical limit for gauge theory onS 2
The semiclassical limit forSU(2) andSO(3) gauge theory on the torus
Yang-Mills on Surfaces with Boundary: Quantum Theory and Symplectic Limit

Ambar Sengupta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ambar Sengupta', 18)}}的其他基金

Research Workshops, UCONN Special Semester in Probability
研究研讨会,康涅狄格大学概率学特别学期
  • 批准号:
    1823060
  • 财政年份:
    2018
  • 资助金额:
    $ 12.57万
  • 项目类别:
    Standard Grant
Mathematical Problems from Geometric/Topological Quantum Field Theories
几何/拓扑量子场论的数学问题
  • 批准号:
    0201683
  • 财政年份:
    2002
  • 资助金额:
    $ 12.57万
  • 项目类别:
    Standard Grant
Mathematical Problems in Low Dimensional Gauge Theories
低维规范理论中的数学问题
  • 批准号:
    9800955
  • 财政年份:
    1998
  • 资助金额:
    $ 12.57万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Gauge Theory on Compact Surfaces
数学科学:紧致曲面规范理论
  • 批准号:
    9400961
  • 财政年份:
    1994
  • 资助金额:
    $ 12.57万
  • 项目类别:
    Standard Grant

相似海外基金

Probabilistic approaches to Brauer groups and rationality problems
布劳尔群和理性问题的概率方法
  • 批准号:
    2302231
  • 财政年份:
    2023
  • 资助金额:
    $ 12.57万
  • 项目类别:
    Continuing Grant
CAREER: Problems in Extremal and Probabilistic Combinatorics
职业:极值和概率组合问题
  • 批准号:
    2146406
  • 财政年份:
    2022
  • 资助金额:
    $ 12.57万
  • 项目类别:
    Continuing Grant
Probabilistic Graph Theory and Random Constraint Satisfaction Problems
概率图论和随机约束满足问题
  • 批准号:
    RGPIN-2019-06522
  • 财政年份:
    2022
  • 资助金额:
    $ 12.57万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Approach to Singular Free Boundary Problems and Applications
奇异自由边界问题的概率方法及其应用
  • 批准号:
    2108680
  • 财政年份:
    2021
  • 资助金额:
    $ 12.57万
  • 项目类别:
    Continuing Grant
The n-city problem and other probabilistic optimisation problems.
n 城市问题和其他概率优化问题。
  • 批准号:
    2594863
  • 财政年份:
    2021
  • 资助金额:
    $ 12.57万
  • 项目类别:
    Studentship
Probabilistic Graph Theory and Random Constraint Satisfaction Problems
概率图论和随机约束满足问题
  • 批准号:
    RGPIN-2019-06522
  • 财政年份:
    2021
  • 资助金额:
    $ 12.57万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Graph Theory and Random Constraint Satisfaction Problems
概率图论和随机约束满足问题
  • 批准号:
    RGPIN-2019-06522
  • 财政年份:
    2020
  • 资助金额:
    $ 12.57万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic numerical methods for Inverse Problems
反问题的概率数值方法
  • 批准号:
    2437932
  • 财政年份:
    2020
  • 资助金额:
    $ 12.57万
  • 项目类别:
    Studentship
Probabilistic Graph Theory and Random Constraint Satisfaction Problems
概率图论和随机约束满足问题
  • 批准号:
    RGPIN-2019-06522
  • 财政年份:
    2019
  • 资助金额:
    $ 12.57万
  • 项目类别:
    Discovery Grants Program - Individual
Computational Problems in Artificial Intelligence and Network Science: Probabilistic Analyses, Graph-Theoretic Characterizations, and Algorithmic Solutions
人工智能和网络科学中的计算问题:概率分析、图论表征和算法解决方案
  • 批准号:
    RGPIN-2014-04848
  • 财政年份:
    2018
  • 资助金额:
    $ 12.57万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了