Interactions between noncommutative algebra, algebraic geometry and representation theory
非交换代数、代数几何和表示论之间的相互作用
基本信息
- 批准号:0603684
- 负责人:
- 金额:$ 11.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-06-01 至 2010-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed projects in this proposal are in three directions. The first project studies noncommutative analogs of algebraic surfaces. Following previous work on classification of maximal orders on projective, nonsingular surfaces, this project studies remaining classes of maximal orders. Another goal for this project is to give explicit constructions of orders on surfaces and then use them to study their module and derived categories. The last goal in this direction is to initiate study of maximal orders on surfaces in characteristic p. The second project continues previous work on self dual sheaves compatible with the intersection chain sheaves on reductive Borel-Serre compactifications of locally symmetric spaces. The goal is to see if such sheaves exist for compactifications of certain unitary Shimura varieties and to see to what extent these sheaves can be used in analysis of the Lefschetz numbers of Hecke correspondences. The last project investigates structure of double Hurwitz numbers of genus zero curves by studying the expected polynomiality phenomenon.In the last few decades, there have been very fruitful interactionsbetween various areas of mathematics and theoretical physics. Oneimportant thread in these connections has been algebraic geometry, a very old subject that dates back at least to ancient Greece. Algebraic geometry is a subject in which solutions of many variable polynomial equations are studied as geometric objects. The proposed projects use tools from algebraic geometry to solve problems in noncommutative algebra. In noncommutative algebra, the main objects of study are polynomials in which the xy is not the same as yx. Such noncommutative algebras are of interest to physicists as well. The second project of this proposal is at the intersection of three subjects: number theory (where number systems are studied), representation theory (where symmetries are studied), and topology. In topology those properties of spaces are studied which do not change under elastic deformations such as twisting and stretching. The spaces to be studied in this project encode number theoretic information. These spaces have some natural symmetries. The goal is to investigate fixed points of these symmetries. The last project is at the intersection of combinatorics and algebraic geometry. The goal is to understand the number of ways in which a sphere can be covered by similar geometric objects called algebraic curves with specified restrictions.
本提案中的拟议项目有三个方向。第一个项目研究代数曲面的非交换类似物。继以前的工作分类的最大订单的投影,非奇异表面,这个项目研究剩余类的最大订单。这个项目的另一个目标是给出曲面上阶的显式构造,然后用它们来研究它们的模和派生范畴。在这个方向的最后一个目标是启动研究的最大订单表面的特征p.第二个项目继续以前的工作自对偶层兼容的交叉链层约化Borel-塞尔紧化的局部对称空间。我们的目标是要看看如果这样的层存在的某些酉志村品种的紧化,并在何种程度上这些层可以用于分析莱夫谢茨数的赫克对应。最后一个项目通过研究亏格零曲线的期望多项式现象来研究亏格零曲线的双Hurwitz数的结构。在过去的几十年里,数学和理论物理的各个领域之间有着非常富有成果的相互作用。这些联系中的一个重要线索是代数几何,这是一个非常古老的学科,至少可以追溯到古希腊。代数几何是以多元多项式方程的解为几何对象来研究的一门学科。拟议的项目使用代数几何的工具来解决非交换代数中的问题。在非交换代数中,主要的研究对象是xy与yx不相同的多项式。这种非交换代数也是物理学家感兴趣的。这个建议的第二个项目是在三个学科的交叉点:数论(研究数字系统),表示论(研究对称性)和拓扑学。在拓扑学中,研究的是在弹性变形(如扭曲和拉伸)下不发生变化的空间的性质。在这个项目中要研究的空间编码数论信息。这些空间具有一些自然的对称性。我们的目标是调查这些对称的不动点。最后一个项目是在组合学和代数几何的交叉点。目标是了解球体可以被类似的几何对象(称为具有指定限制的代数曲线)覆盖的方式的数量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rajesh Kulkarni其他文献
Effect of the melt granulation technique on the dissolution characteristics of griseofulvin
- DOI:
10.1016/j.ijpharm.2006.08.029 - 发表时间:
2007-02-01 - 期刊:
- 影响因子:
- 作者:
Dong Yang;Rajesh Kulkarni;Robert J. Behme;Pramila N. Kotiyan - 通讯作者:
Pramila N. Kotiyan
Coronavirus disease 2019 pneumonia with acute respiratory distress syndrome in a child requiring prolonged mechanical ventilation: A case report
2019冠状病毒病肺炎伴急性呼吸窘迫综合征,需要长时间机械通气的儿童:病例报告
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Shraddha Sunthwal;Sagar S. Lad;Sanjay Bafna;Rajesh Kulkarni;Preeti Lad;Salma Ahmadi;R. Ganacharya - 通讯作者:
R. Ganacharya
Ochoa or Urofacial syndrome
- DOI:
10.1007/s13312-010-0067-5 - 发表时间:
2010-08-19 - 期刊:
- 影响因子:1.500
- 作者:
N. R. Sutay;Rajesh Kulkarni;Manish K. Arya - 通讯作者:
Manish K. Arya
Pharmazeutische Rifaximin-Zusammensetzungen
药品利福昔明-Zusamensetzungen
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Harshal Anil Jahagirdar;Rajesh Kulkarni;Shirishkumar Kulkarni - 通讯作者:
Shirishkumar Kulkarni
PS redesign for Smartphone-using older adults
为使用智能手机的老年人重新设计 PS
- DOI:
10.1109/iccubea.2016.7860020 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Rajesh Kulkarni;P. Padmanabham;Sayara Nadaf - 通讯作者:
Sayara Nadaf
Rajesh Kulkarni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rajesh Kulkarni', 18)}}的其他基金
Noncommutative Algebras and Their Interactions With Algebraic and Arithmetic Geometry
非交换代数及其与代数和算术几何的相互作用
- 批准号:
2101761 - 财政年份:2021
- 资助金额:
$ 11.13万 - 项目类别:
Standard Grant
Interactions between noncommutative algebra, algebraic geometry and representation theory
非交换代数、代数几何和表示论之间的相互作用
- 批准号:
1305377 - 财政年份:2013
- 资助金额:
$ 11.13万 - 项目类别:
Continuing Grant
Interactions between noncommutative algebra, algebraic geometry and representation theory
非交换代数、代数几何和表示论之间的相互作用
- 批准号:
1004306 - 财政年份:2010
- 资助金额:
$ 11.13万 - 项目类别:
Standard Grant
Interactions between Algebra, Algebraic Geometry and Topology
代数、代数几何和拓扑之间的相互作用
- 批准号:
0202295 - 财政年份:2002
- 资助金额:
$ 11.13万 - 项目类别:
Standard Grant
Interactions between Algebra, Algebraic Geometry and Topology
代数、代数几何和拓扑之间的相互作用
- 批准号:
0311850 - 财政年份:2002
- 资助金额:
$ 11.13万 - 项目类别:
Standard Grant
相似海外基金
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
$ 11.13万 - 项目类别:
Studentship
Translations between Type Theories
类型理论之间的翻译
- 批准号:
EP/Z000602/1 - 财政年份:2025
- 资助金额:
$ 11.13万 - 项目类别:
Research Grant
Thwarted Identity: The Missing Link Between Psychopathology and Prejudice
受挫的身份:精神病理学与偏见之间缺失的联系
- 批准号:
DP240100108 - 财政年份:2024
- 资助金额:
$ 11.13万 - 项目类别:
Discovery Projects
A Cultural Plutocracy? Transnational families and the consumption of luxury goods in Britain and in France between 1870 and 1930
文化富豪统治?
- 批准号:
2882198 - 财政年份:2024
- 资助金额:
$ 11.13万 - 项目类别:
Studentship
A MISSING LINK between continental shelves and the deep sea: Addressing the overlooked role of land-detached submarine canyons
大陆架和深海之间缺失的联系:解决与陆地无关的海底峡谷被忽视的作用
- 批准号:
NE/X014975/1 - 财政年份:2024
- 资助金额:
$ 11.13万 - 项目类别:
Research Grant
Leveraging the synergy between experiment and computation to understand the origins of chalcogen bonding
利用实验和计算之间的协同作用来了解硫族键合的起源
- 批准号:
EP/Y00244X/1 - 财政年份:2024
- 资助金额:
$ 11.13万 - 项目类别:
Research Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
- 批准号:
2319123 - 财政年份:2024
- 资助金额:
$ 11.13万 - 项目类别:
Standard Grant
CAREER: Quantifying congruences between modular forms
职业:量化模块化形式之间的同余性
- 批准号:
2337830 - 财政年份:2024
- 资助金额:
$ 11.13万 - 项目类别:
Continuing Grant
CAREER: Closing the Loop between Learning and Communication for Assistive Robot Arms
职业:关闭辅助机器人手臂的学习和交流之间的循环
- 批准号:
2337884 - 财政年份:2024
- 资助金额:
$ 11.13万 - 项目类别:
Standard Grant
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
- 批准号:
2333102 - 财政年份:2024
- 资助金额:
$ 11.13万 - 项目类别:
Continuing Grant