Interactions between Algebra, Algebraic Geometry and Topology
代数、代数几何和拓扑之间的相互作用
基本信息
- 批准号:0202295
- 负责人:
- 金额:$ 8.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-05-01 至 2003-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this proposal, the investigator and collaborators study problems inalgebra, algebraic geometry and topology. Three of these projectsstudy families of noncommutative algebras arising naturally in variousbranches of algebra. The first project is to study finite dimensionalirreducible representations of Clifford algebras of forms of higherdegree. The approach in studying these algebras is to work on areformulation of the questions in terms of moduli spaces of certainreflexive sheaves on hypersurfaces. Another goal is to investigatearithmetic applications of these results. The second project (jointwith D. Chan) is continuation of previous work on sheaves of maximalorders on complex, projective, algebraic surfaces. The main goal is toclassify various classes of such sheaves of maximal orders. This workfollows recently developed ideas in noncommutative algebraicgeometry. The third project (joint with A. Ram) is to investigatewhether the Springer correspondence can be set up for rationalCherednik algebras along the lines of single graded Heckealgebras. Another goal is to investigate whether these algebras can berelated to N. Wallach's approach to the Springer correspondence. Thelast project (joint with M. Banagl) is to investigate whether thereexist self-dual sheaves compatible with the intersection chain sheaveson reductive Borel-Serre compactifications of locally symmetric spacesassociated to semisimple algebraic groups defined over rationalnumbers. In the last few decades, the interaction between various branches ofmathematics and theoretical physics has proved to be especiallyenriching for all the fields. One important thread in theseconnections has been algebraic geometry, a very old subject that datesback at least to ancient Greece. Algebraic geometry is the area of mathematics that studies solutions to multi-variable polynomial equations as geometric objects. It has found applications not only inmathematics, but also in computer science, coding theory, robotics andstring theory in physics to name a few areas impacted by it. The firsttwo projects of this proposal use tools from this subject to study"algebras" that are of interest to a wide range of mathematicians andphysicists. It is useful to describe the whole family of such classesof algebras as a geometric object, and a goal of this project is toobtain such descriptions. The third aspect of this research is partof a subject called representation theory. The main objects of studyhere are "representations", processes which encode information aboutsymmetry in nature. The last part of this proposal stands at theintersection of three subjects: number theory (where number systemsare studied), representation theory, and topology. In topology spacesare studied to determine which properties do not change under elasticdeformations such as twisting and stretching. The spaces to bestudied in this research encode number theoretic information. The goalis to investigate whether there are invariants of these spaces whichthemselves satisfy some symmetry.
在这个提议中,研究者和合作者研究代数,代数几何和拓扑问题。其中三个项目研究在代数的不同分支中自然产生的非交换代数族。第一个课题是研究高次Clifford代数的有限维不可约表示。研究这些代数的方法是研究用超曲面上某些自反束的模空间来表述问题。另一个目标是研究这些结果的算术应用。第二个项目(与D. Chan合作)是对复杂、射影、代数曲面上最大阶序列的延续。主要目标是对这些最大阶的捆的各种类别进行分类。这项工作遵循了最近在非交换代数几何中发展起来的思想。第三个项目(与A. Ram合作)是研究是否可以沿着单阶hecke代数的路线建立理性cherednik代数的施普林格对应关系。另一个目标是研究这些代数是否与N. Wallach的施普林格对应方法有关。最后一个项目(与M. Banagl合作)是研究在有理数上定义的半简单代数群的局部对称空间中是否存在与交链轮相容的自对偶轮。在过去的几十年里,数学和理论物理的各个分支之间的相互作用已经被证明是特别丰富的所有领域。这些联系中的一条重要线索是代数几何,这是一门非常古老的学科,至少可以追溯到古希腊。代数几何是将多变量多项式方程的解作为几何对象进行研究的数学领域。它不仅应用于数学,还应用于计算机科学、编码理论、机器人技术和物理学中的弦理论,仅举几个受其影响的领域。本提案的前两个项目使用本学科的工具来研究数学家和物理学家感兴趣的“代数”。将这类代数的整个家族描述为一个几何对象是有用的,本项目的目标是获得这样的描述。这项研究的第三个方面是表征理论的一部分。这里研究的主要对象是“表征”,即对自然界对称性信息进行编码的过程。本提案的最后一部分涉及三个主题的交叉:数论(研究数系统的地方)、表示理论和拓扑学。在拓扑空间中研究了在弹性变形(如扭曲和拉伸)下哪些性质不改变。本研究研究的空间编码数论信息。目的是研究这些空间是否存在自身满足某种对称性的不变量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rajesh Kulkarni其他文献
Effect of the melt granulation technique on the dissolution characteristics of griseofulvin
- DOI:
10.1016/j.ijpharm.2006.08.029 - 发表时间:
2007-02-01 - 期刊:
- 影响因子:
- 作者:
Dong Yang;Rajesh Kulkarni;Robert J. Behme;Pramila N. Kotiyan - 通讯作者:
Pramila N. Kotiyan
Coronavirus disease 2019 pneumonia with acute respiratory distress syndrome in a child requiring prolonged mechanical ventilation: A case report
2019冠状病毒病肺炎伴急性呼吸窘迫综合征,需要长时间机械通气的儿童:病例报告
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Shraddha Sunthwal;Sagar S. Lad;Sanjay Bafna;Rajesh Kulkarni;Preeti Lad;Salma Ahmadi;R. Ganacharya - 通讯作者:
R. Ganacharya
Ochoa or Urofacial syndrome
- DOI:
10.1007/s13312-010-0067-5 - 发表时间:
2010-08-19 - 期刊:
- 影响因子:1.500
- 作者:
N. R. Sutay;Rajesh Kulkarni;Manish K. Arya - 通讯作者:
Manish K. Arya
Pharmazeutische Rifaximin-Zusammensetzungen
药品利福昔明-Zusamensetzungen
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Harshal Anil Jahagirdar;Rajesh Kulkarni;Shirishkumar Kulkarni - 通讯作者:
Shirishkumar Kulkarni
PS redesign for Smartphone-using older adults
为使用智能手机的老年人重新设计 PS
- DOI:
10.1109/iccubea.2016.7860020 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Rajesh Kulkarni;P. Padmanabham;Sayara Nadaf - 通讯作者:
Sayara Nadaf
Rajesh Kulkarni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rajesh Kulkarni', 18)}}的其他基金
Noncommutative Algebras and Their Interactions With Algebraic and Arithmetic Geometry
非交换代数及其与代数和算术几何的相互作用
- 批准号:
2101761 - 财政年份:2021
- 资助金额:
$ 8.36万 - 项目类别:
Standard Grant
Interactions between noncommutative algebra, algebraic geometry and representation theory
非交换代数、代数几何和表示论之间的相互作用
- 批准号:
1305377 - 财政年份:2013
- 资助金额:
$ 8.36万 - 项目类别:
Continuing Grant
Interactions between noncommutative algebra, algebraic geometry and representation theory
非交换代数、代数几何和表示论之间的相互作用
- 批准号:
1004306 - 财政年份:2010
- 资助金额:
$ 8.36万 - 项目类别:
Standard Grant
Interactions between noncommutative algebra, algebraic geometry and representation theory
非交换代数、代数几何和表示论之间的相互作用
- 批准号:
0603684 - 财政年份:2006
- 资助金额:
$ 8.36万 - 项目类别:
Standard Grant
Interactions between Algebra, Algebraic Geometry and Topology
代数、代数几何和拓扑之间的相互作用
- 批准号:
0311850 - 财政年份:2002
- 资助金额:
$ 8.36万 - 项目类别:
Standard Grant
相似海外基金
Interactions between Commutative Algebra and Representation Theory
交换代数与表示论之间的相互作用
- 批准号:
1848744 - 财政年份:2018
- 资助金额:
$ 8.36万 - 项目类别:
Standard Grant
Interactions between Moduli Spaces, Non-Commutative Algebra, and Deformation Theory.
模空间、非交换代数和变形理论之间的相互作用。
- 批准号:
EP/M017516/2 - 财政年份:2016
- 资助金额:
$ 8.36万 - 项目类别:
Fellowship
Interactions between Commutative Algebra and Representation Theory
交换代数与表示论之间的相互作用
- 批准号:
1500069 - 财政年份:2015
- 资助金额:
$ 8.36万 - 项目类别:
Standard Grant
Interactions between Moduli Spaces, Non-Commutative Algebra, and Deformation Theory.
模空间、非交换代数和变形理论之间的相互作用。
- 批准号:
EP/M017516/1 - 财政年份:2015
- 资助金额:
$ 8.36万 - 项目类别:
Fellowship
Conference Proposal: Interactions between Representation Theory, Algebraic Topology and Commutative Algebra
会议提案:表示论、代数拓扑学和交换代数之间的相互作用
- 批准号:
1501399 - 财政年份:2015
- 资助金额:
$ 8.36万 - 项目类别:
Standard Grant
Interactions between p-adic arithmetic geometry and commutative algebra
p进算术几何与交换代数之间的相互作用
- 批准号:
1522828 - 财政年份:2014
- 资助金额:
$ 8.36万 - 项目类别:
Standard Grant
Interactions between non-commutative algebra and algebraic geometry
非交换代数与代数几何之间的相互作用
- 批准号:
DP130100513 - 财政年份:2013
- 资助金额:
$ 8.36万 - 项目类别:
Discovery Projects
Interactions between p-adic arithmetic geometry and commutative algebra
p进算术几何与交换代数之间的相互作用
- 批准号:
1340424 - 财政年份:2013
- 资助金额:
$ 8.36万 - 项目类别:
Standard Grant
Interactions between noncommutative algebra, algebraic geometry and representation theory
非交换代数、代数几何和表示论之间的相互作用
- 批准号:
1305377 - 财政年份:2013
- 资助金额:
$ 8.36万 - 项目类别:
Continuing Grant
Interactions between Commutative Algebra and Algebraic Geometry
交换代数与代数几何之间的相互作用
- 批准号:
1243074 - 财政年份:2012
- 资助金额:
$ 8.36万 - 项目类别:
Standard Grant