Interactions between noncommutative algebra, algebraic geometry and representation theory

非交换代数、代数几何和表示论之间的相互作用

基本信息

  • 批准号:
    1305377
  • 负责人:
  • 金额:
    $ 21.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-06-01 至 2018-05-31
  • 项目状态:
    已结题

项目摘要

The proposed research consists of three related projects at the intersection of noncommutative algebra and algebraic geometry. The first project concerns noncommutative analogs of algebraic varieties called maximal orders; these are coherent sheaves of noncommutative algebras on varieties whose generic stalk is a central simple algebra. The project involves studying modules over some maximal orders, developing a minimal model program for maximal orders on 3-folds, and studying Brauer groups of supersingular K3 surfaces in characteristic p. The second project focuses on Clifford algebras and Ulrich sheaves on varieties. This project uses Clifford algebra representations to construct Ulrich sheaves on algebraic varieties and examines stability in the category of Ulrich sheaves on varieties. The third project links Clifford algebras and Brauer groups of fields by investigating the relationship between cyclicity of division algebras and representations of Clifford algebras, and by using weighted Clifford algebras to study relative Brauer groups of curves. The fruitful interactions between mathematics and theoretical physics in the past several decades have resulted in great interest in noncommutative algebras and Clifford algebras in particular. Noncommutative algebras are similar to polynomials in which the order of multiplication matters. Clifford algebras occur in the definition of the Dirac equation and are an integral part of quantum mechanics and quantum field theory. Noncommutative algebras can be studied using the sophisticated methods of algebraic geometry and, conversely, have been used to answer questions is algebraic geometry. Algebraic geometry was developed and has proved to be a powerful tool for addressing some old problems in algebra. The subject of noncommutative algebraic geometry has been progressing rapidly, and the projects in this proposal further develop some deep geometric and algebraic aspects of noncommutative algebras (and Clifford algebras in particular) and related algebraic geometry.
建议的研究包括三个相关的项目在非交换代数和代数几何的交叉点。第一个项目涉及代数簇的非交换类似物称为最大订单;这些是凝聚层的非交换代数品种的通用茎是一个中心的简单代数。该项目涉及研究模在一些最大的订单,开发一个最小的模型程序的最大订单的3倍,并研究Brauer群的超奇异K3表面的特征p。第二个项目的重点是Clifford代数和乌尔里希层的品种。这个项目使用Clifford代数表示来构造代数簇上的Ulrich层,并研究簇上Ulrich层范畴的稳定性。第三个项目通过研究除代数的循环性和Clifford代数的表示之间的关系,以及通过使用加权Clifford代数来研究相对Brauer曲线群,将Clifford代数和Brauer域群联系起来。在过去的几十年里,数学和理论物理之间卓有成效的相互作用引起了人们对非交换代数,特别是Clifford代数的极大兴趣。非交换代数类似于多项式,其中乘法的顺序很重要。克利福德代数出现在狄拉克方程的定义中,是量子力学和量子场论的一个组成部分。非交换代数可以用代数几何的复杂方法来研究,反过来,也可以用来回答代数几何的问题。代数几何的发展,并已被证明是一个强大的工具,解决一些老问题的代数。非交换代数几何的主题进展迅速,本提案中的项目进一步发展了非交换代数(特别是克利福德代数)和相关代数几何的一些深刻的几何和代数方面。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rajesh Kulkarni其他文献

Effect of the melt granulation technique on the dissolution characteristics of griseofulvin
  • DOI:
    10.1016/j.ijpharm.2006.08.029
  • 发表时间:
    2007-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dong Yang;Rajesh Kulkarni;Robert J. Behme;Pramila N. Kotiyan
  • 通讯作者:
    Pramila N. Kotiyan
Coronavirus disease 2019 pneumonia with acute respiratory distress syndrome in a child requiring prolonged mechanical ventilation: A case report
2019冠状病毒病肺炎伴急性呼吸窘迫综合征,需要长时间机械通气的儿童:病例报告
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shraddha Sunthwal;Sagar S. Lad;Sanjay Bafna;Rajesh Kulkarni;Preeti Lad;Salma Ahmadi;R. Ganacharya
  • 通讯作者:
    R. Ganacharya
Ochoa or Urofacial syndrome
  • DOI:
    10.1007/s13312-010-0067-5
  • 发表时间:
    2010-08-19
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    N. R. Sutay;Rajesh Kulkarni;Manish K. Arya
  • 通讯作者:
    Manish K. Arya
Pharmazeutische Rifaximin-Zusammensetzungen
药品利福昔明-Zusamensetzungen
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harshal Anil Jahagirdar;Rajesh Kulkarni;Shirishkumar Kulkarni
  • 通讯作者:
    Shirishkumar Kulkarni
PS redesign for Smartphone-using older adults
为使用智能手机的老年人重新设计 PS

Rajesh Kulkarni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rajesh Kulkarni', 18)}}的其他基金

Noncommutative Algebras and Their Interactions With Algebraic and Arithmetic Geometry
非交换代数及其与代数和算术几何的相互作用
  • 批准号:
    2101761
  • 财政年份:
    2021
  • 资助金额:
    $ 21.68万
  • 项目类别:
    Standard Grant
Interactions between noncommutative algebra, algebraic geometry and representation theory
非交换代数、代数几何和表示论之间的相互作用
  • 批准号:
    1004306
  • 财政年份:
    2010
  • 资助金额:
    $ 21.68万
  • 项目类别:
    Standard Grant
Interactions between noncommutative algebra, algebraic geometry and representation theory
非交换代数、代数几何和表示论之间的相互作用
  • 批准号:
    0603684
  • 财政年份:
    2006
  • 资助金额:
    $ 21.68万
  • 项目类别:
    Standard Grant
Interactions between Algebra, Algebraic Geometry and Topology
代数、代数几何和拓扑之间的相互作用
  • 批准号:
    0202295
  • 财政年份:
    2002
  • 资助金额:
    $ 21.68万
  • 项目类别:
    Standard Grant
Interactions between Algebra, Algebraic Geometry and Topology
代数、代数几何和拓扑之间的相互作用
  • 批准号:
    0311850
  • 财政年份:
    2002
  • 资助金额:
    $ 21.68万
  • 项目类别:
    Standard Grant

相似海外基金

Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    $ 21.68万
  • 项目类别:
    Studentship
Translations between Type Theories
类型理论之间的翻译
  • 批准号:
    EP/Z000602/1
  • 财政年份:
    2025
  • 资助金额:
    $ 21.68万
  • 项目类别:
    Research Grant
Thwarted Identity: The Missing Link Between Psychopathology and Prejudice
受挫的身份:精神病理学与偏见之间缺失的联系
  • 批准号:
    DP240100108
  • 财政年份:
    2024
  • 资助金额:
    $ 21.68万
  • 项目类别:
    Discovery Projects
A Cultural Plutocracy? Transnational families and the consumption of luxury goods in Britain and in France between 1870 and 1930
文化富豪统治?
  • 批准号:
    2882198
  • 财政年份:
    2024
  • 资助金额:
    $ 21.68万
  • 项目类别:
    Studentship
A MISSING LINK between continental shelves and the deep sea: Addressing the overlooked role of land-detached submarine canyons
大陆架和深海之间缺失的联系:解决与陆地无关的海底峡谷被忽视的作用
  • 批准号:
    NE/X014975/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.68万
  • 项目类别:
    Research Grant
Leveraging the synergy between experiment and computation to understand the origins of chalcogen bonding
利用实验和计算之间的协同作用来了解硫族键合的起源
  • 批准号:
    EP/Y00244X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.68万
  • 项目类别:
    Research Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
  • 批准号:
    2319123
  • 财政年份:
    2024
  • 资助金额:
    $ 21.68万
  • 项目类别:
    Standard Grant
CAREER: Quantifying congruences between modular forms
职业:量化模块化形式之间的同余性
  • 批准号:
    2337830
  • 财政年份:
    2024
  • 资助金额:
    $ 21.68万
  • 项目类别:
    Continuing Grant
CAREER: Closing the Loop between Learning and Communication for Assistive Robot Arms
职业:关闭辅助机器人手臂的学习和交流之间的循环
  • 批准号:
    2337884
  • 财政年份:
    2024
  • 资助金额:
    $ 21.68万
  • 项目类别:
    Standard Grant
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
  • 批准号:
    2333102
  • 财政年份:
    2024
  • 资助金额:
    $ 21.68万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了