PDE Methods for the Stability Study in Kinetic Theory and Their Applications
动力学理论稳定性研究的偏微分方程方法及其应用
基本信息
- 批准号:0603815
- 负责人:
- 金额:$ 24.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The study of nonlinear stability and instability of important equilibria in physical and biological systems ultimately relies on rigorous analytical proofs. The Boltzmann equation is the foundation in the kinetic theory for dilute gases. It is well known that many important fluid equations can be formally derived from the Boltzmann equation. We propose to use a nonlinear energy method to prove the validity of diffusive expansion in linear neutron transport theory, of the Navier-Stokes approximation of the Boltzmann theory in the presence of physical boundary conditions, and of the stability of `front' solution for phase segregation in a binary fluid model. We also propose to study pattern formation in various physical and biological applications such as in reaction-diffusion systems and the Benard problem for a heated fluid. It is expected that the pattern of nonlinear instabilities in these system can be characterized by the finitely many fastest growing modes for the corresponding linear system, over the time of instability formation. Finally, we propose to further study nonlinear stability of galaxy configurations.Kinetic theory is used to describe the dynamics of a large number of dilute `particles'. These `particles' can be as small as gas molecules or charged ions or electrons in a plasma, or enormous objects such as stars in galaxies. Such kind of dilute charged gases (plasma) dominates our outer space, and plays the crucial role in our fusion research. We propose to study the long-time dynamics of these dilute gases form a mathematical standpoint. Furthermore, we propose to study stability of the galaxy models and predict their long-time dynamics. Pattern formation plays an important role in many physical and biological systems. By applying a recent instability method, we propose to develop a mathematical theory to explain these interesting phenomena.
对物理和生物系统中重要平衡的非线性稳定性和不稳定性的研究最终依赖于严格的分析证明。玻尔兹曼方程是稀气体动力学理论的基础。众所周知,许多重要的流体方程可以从玻尔兹曼方程形式上推导出来。我们提出用一种非线性能量方法来证明线性中子输运理论中扩散展开的有效性,玻尔兹曼理论中存在物理边界条件的Navier-Stokes近似的有效性,以及二元流体模型中相偏析“前”解的稳定性。我们还建议研究各种物理和生物应用中的模式形成,例如反应扩散系统和加热流体的贝纳德问题。预计这些系统的非线性不稳定性模式可以用相应线性系统在不稳定性形成时间内的有限多个最快增长模态来表征。最后,我们提出进一步研究星系结构的非线性稳定性。动态论是用来描述大量稀“粒子”的动力学。这些“粒子”可以小到气体分子或等离子体中的带电离子或电子,也可以是像星系中的恒星这样的巨大物体。这种稀薄的带电气体(等离子体)支配着我们的外层空间,在我们的聚变研究中起着至关重要的作用。我们建议从数学的角度来研究这些稀释气体的长期动力学。此外,我们建议研究星系模型的稳定性并预测它们的长期动力学。模式形成在许多物理和生物系统中起着重要作用。通过应用最近的不稳定性方法,我们提出了一个数学理论来解释这些有趣的现象。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yan Guo其他文献
Enhanced Sieving of C2‐Hydrocarbon from Methane by Fluoro‐Functionalization of In‐MOF with Robust Stability
通过氟增强从甲烷中筛选 C2 — 碳氢化合物 — 具有鲁棒稳定性的 In — MOF 功能化
- DOI:
10.1002/asia.202101220 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Yan Guo;Chen Liang;Chengcheng Zhang;Jesús Ferr;o‐Soria;Yu Gao;Jiahui Yang;Xiangyu Liu;Emilio Pardo - 通讯作者:
Emilio Pardo
In situ ligand-free growth of TiO2-escapsulated Au nanocomposites on photoanode for efficient dye sensitized solar cells
TiO2 封装的 Au 纳米复合材料在光电阳极上原位无配体生长,用于高效染料敏化太阳能电池
- DOI:
10.1016/j.cej.2020.125302 - 发表时间:
2020-09 - 期刊:
- 影响因子:15.1
- 作者:
Xiong He;Yan Guo;Xin Li - 通讯作者:
Xin Li
High mechanical strength aluminum foam epoxy resin composite material with superhydrophobic, anticorrosive and wear-resistant surface
表面超疏水、防腐、耐磨的高机械强度泡沫铝环氧树脂复合材料
- DOI:
10.1016/j.surfin.2022.101747 - 发表时间:
2022-01 - 期刊:
- 影响因子:6.2
- 作者:
Yuwei Wang;Baoli Ou;Ping Zhu;Bo Niu;Yan Guo;Qian Zhi - 通讯作者:
Qian Zhi
A Facile, Microwave‐Assisted, Palladium‐Catalyzed Arylation of Acetone.
丙酮的简便、微波辅助、钯催化芳基化。
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
H. Chobanian;Ping Liu;M. Chioda;Yan Guo;L. Lin - 通讯作者:
L. Lin
Sensing Matrix Optimization for Multi-target Localization Using Compressed Sensing in Wireless Sensor Network
无线传感器网络中使用压缩感知的多目标定位的传感矩阵优化
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:4.1
- 作者:
Xinhua Jiang;Ning Li;Yan Guo;Jie Liu;Cong Wang - 通讯作者:
Cong Wang
Yan Guo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yan Guo', 18)}}的其他基金
Partial Differential Equation Methods in Kinetic Theory and Their Applications
运动理论中的偏微分方程方法及其应用
- 批准号:
2106650 - 财政年份:2021
- 资助金额:
$ 24.21万 - 项目类别:
Continuing Grant
Partial Differential Equation Methods in Kinetic Theory and Their Applications
运动理论中的偏微分方程方法及其应用
- 批准号:
1810868 - 财政年份:2018
- 资助金额:
$ 24.21万 - 项目类别:
Standard Grant
Partial differential equation methods in kinetic theory and their applications
动力学理论中的偏微分方程方法及其应用
- 批准号:
1611695 - 财政年份:2016
- 资助金额:
$ 24.21万 - 项目类别:
Standard Grant
PDE Methods in Kinetic Theory and Their Applications
动力学理论中的偏微分方程方法及其应用
- 批准号:
1209437 - 财政年份:2012
- 资助金额:
$ 24.21万 - 项目类别:
Continuing Grant
PDE Methods in Kinetic Theory and Their Applications
动力学理论中的偏微分方程方法及其应用
- 批准号:
0905255 - 财政年份:2009
- 资助金额:
$ 24.21万 - 项目类别:
Standard Grant
PDE Methods for the Stability Study in Kinetic Theory and Their Applications
动力学理论稳定性研究的偏微分方程方法及其应用
- 批准号:
0305161 - 财政年份:2003
- 资助金额:
$ 24.21万 - 项目类别:
Continuing Grant
Stability Problems in Plasma Physics, Stellar Dynamics and Classical Field Theory
等离子体物理、恒星动力学和经典场论中的稳定性问题
- 批准号:
9971306 - 财政年份:1999
- 资助金额:
$ 24.21万 - 项目类别:
Standard Grant
Mathematical Sciences: Stability Problems in Plasmas
数学科学:等离子体的稳定性问题
- 批准号:
9623253 - 财政年份:1996
- 资助金额:
$ 24.21万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9508854 - 财政年份:1995
- 资助金额:
$ 24.21万 - 项目类别:
Fellowship Award
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of tissue-specific methods controlling protein stability
控制蛋白质稳定性的组织特异性方法的开发
- 批准号:
23K14331 - 财政年份:2023
- 资助金额:
$ 24.21万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of Innovative Design Methods for Enhanced Seismic Stability of Steel Framed Building Structures
开发增强钢框架建筑结构抗震稳定性的创新设计方法
- 批准号:
RGPIN-2017-04013 - 财政年份:2022
- 资助金额:
$ 24.21万 - 项目类别:
Discovery Grants Program - Individual
Assessing the stability of earthen dams using photogrammetry and radar remote sensing methods on a drone
在无人机上使用摄影测量和雷达遥感方法评估土坝的稳定性
- 批准号:
576025-2022 - 财政年份:2022
- 资助金额:
$ 24.21万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Elucidation of Autonomous Stability Mechanisms Using Agent-Based Macroeconomic Models and Development of Inductive Research Methods
使用基于主体的宏观经济模型阐明自主稳定机制和归纳研究方法的发展
- 批准号:
22K01403 - 财政年份:2022
- 资助金额:
$ 24.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
DERIVED CATEGORY METHODS IN ARITHMETIC: AN APPROACH TO SZPIRO'S CONJECTURE VIA HOMOLOGICAL MIRROR SYMMETRY AND BRIDGELAND STABILITY CONDITIONS
算术中的派生范畴方法:通过同调镜像对称性和布里奇兰稳定性条件推导SZPIRO猜想
- 批准号:
EP/V047299/1 - 财政年份:2021
- 资助金额:
$ 24.21万 - 项目类别:
Research Grant
Differential Scanning Fluorimetry (DSF) Methods for Studying Protein Stability
研究蛋白质稳定性的差示扫描荧光 (DSF) 方法
- 批准号:
10626847 - 财政年份:2021
- 资助金额:
$ 24.21万 - 项目类别:
Development and application of novel methods for assessing spine stability and loading.
评估脊柱稳定性和负载的新方法的开发和应用。
- 批准号:
563884-2021 - 财政年份:2021
- 资助金额:
$ 24.21万 - 项目类别:
University Undergraduate Student Research Awards
Differential Scanning Fluorimetry (DSF) Methods for Studying Protein Stability
研究蛋白质稳定性的差示扫描荧光 (DSF) 方法
- 批准号:
10462611 - 财政年份:2021
- 资助金额:
$ 24.21万 - 项目类别:
Development of Innovative Design Methods for Enhanced Seismic Stability of Steel Framed Building Structures
开发增强钢框架建筑结构抗震稳定性的创新设计方法
- 批准号:
RGPIN-2017-04013 - 财政年份:2021
- 资助金额:
$ 24.21万 - 项目类别:
Discovery Grants Program - Individual
Differential Scanning Fluorimetry (DSF) Methods for Studying Protein Stability
研究蛋白质稳定性的差示扫描荧光 (DSF) 方法
- 批准号:
10184149 - 财政年份:2021
- 资助金额:
$ 24.21万 - 项目类别: