Partial Differential Equation Methods in Kinetic Theory and Their Applications
运动理论中的偏微分方程方法及其应用
基本信息
- 批准号:1810868
- 负责人:
- 金额:$ 39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A plasma is a collection of dilute, fast moving charged particles. It is believed that more than 95% of the matter in the universe is in the form of a plasma (the fourth state). The main motivation of this research is to promote design of nuclear fusion devices (such as a tokamak), in which a confined plasma is accelerated at high speed to produce high energy. This project focuses on basic mathematical research related to the study of a plasma in a tokamak. Research topics include study of plasma-wall interaction, dynamic stability of plasma configurations, as well as shock waves in plasma. All of such topics are fundamental theoretically in the plasma control for a nuclear fusion device with potential applications.More specifically, the project is aimed at establishing regularity, and the validity of boundary layer expansion with geometric corrections for the Boltzmann theory in a convex domain. The key methodology is based on the principal investigator's previous work on regularity of similar boundary layer expansions for the neutron transport equations. Another direction to be pursued is well-posedness for the Vlasov-Landau equations in a bounded domain. This system of equations is fundamental in modeling a collisional plasma, and the boundary value problem models the plasma-wall interaction. Among other problems to be investigated are: The Landau damping and long-time stability for the BGK waves in a Vlasov-Poisson system; the long-time behavior of Euler-Maxwell system in the presence of a non-zero vorticity that describes the fundamental two-fluid models in a plasma; the dynamics of moving contact lines in fluids.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
等离子体是一种稀的、快速移动的带电粒子的集合。据信,宇宙中95%以上的物质是以等离子体(第四种状态)的形式存在的。这项研究的主要动机是促进核聚变装置(如托卡马克)的设计,其中限制等离子体以高速加速以产生高能量。该项目的重点是与托卡马克等离子体研究相关的基础数学研究。研究课题包括等离子体与壁面相互作用、等离子体结构的动态稳定性以及等离子体中的冲击波。所有这些课题都是核聚变装置等离子体控制的基础理论,具有潜在的应用价值。更具体地说,该项目旨在建立规则性,以及凸域中Boltzmann理论的边界层展开与几何校正的有效性。关键的方法是基于主要研究者以前的工作规律类似的边界层膨胀的中子输运方程。另一个研究方向是有界域上的Vlasov-Landau方程的适定性。该方程组是模拟碰撞等离子体的基础,而边值问题模拟了等离子体与壁面的相互作用。其中包括:Vlasov-Poisson系统中BGK波的朗道阻尼和长时间稳定性,描述等离子体中基本双流体模型的非零涡量存在下Euler-Maxwell系统的长时间行为,等离子体中BGK波的稳定性,等离子体中BGK波的稳定该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的学术价值和更广泛的影响审查标准。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Continued Gravitational Collapse for Newtonian Stars
- DOI:10.1007/s00205-020-01580-w
- 发表时间:2020-10-06
- 期刊:
- 影响因子:2.5
- 作者:Guo, Yan;Hadzic, Mahir;Jang, Juhi
- 通讯作者:Jang, Juhi
Hilbert Expansion of the Boltzmann Equation with Specular Boundary Condition in Half-Space
- DOI:10.1007/s00205-021-01651-6
- 发表时间:2020-08
- 期刊:
- 影响因子:2.5
- 作者:Yan Guo;F. Huang;Yong Wang
- 通讯作者:Yan Guo;F. Huang;Yong Wang
Stationary solutions to the Boltzmann equation in the hydrodynamic limit. Ann. PDE 4 (2018), no. 1, Art. 1, 119 pp.
流体力学极限下玻尔兹曼方程的平稳解。
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:2.8
- 作者:Esposito, Raffaele;Guo, Yan;Kim, Chanwoo;Marra, Rossana
- 通讯作者:Marra, Rossana
Hydrodynamic Limit of a Kinetic Gas Flow Past an Obstacle
- DOI:10.1007/s00220-018-3173-1
- 发表时间:2017-02
- 期刊:
- 影响因子:2.4
- 作者:R. Esposito;Yan Guo;R. Marra
- 通讯作者:R. Esposito;Yan Guo;R. Marra
Stability of contact lines in fluids: 2D Stokes flow. Arch. Ration. Mech. Anal.
流体中接触线的稳定性:二维斯托克斯流。
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:2.5
- 作者:Guo, Yan;Tice, Ian
- 通讯作者:Tice, Ian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yan Guo其他文献
Enhanced Sieving of C2‐Hydrocarbon from Methane by Fluoro‐Functionalization of In‐MOF with Robust Stability
通过氟增强从甲烷中筛选 C2 — 碳氢化合物 — 具有鲁棒稳定性的 In — MOF 功能化
- DOI:
10.1002/asia.202101220 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Yan Guo;Chen Liang;Chengcheng Zhang;Jesús Ferr;o‐Soria;Yu Gao;Jiahui Yang;Xiangyu Liu;Emilio Pardo - 通讯作者:
Emilio Pardo
In situ ligand-free growth of TiO2-escapsulated Au nanocomposites on photoanode for efficient dye sensitized solar cells
TiO2 封装的 Au 纳米复合材料在光电阳极上原位无配体生长,用于高效染料敏化太阳能电池
- DOI:
10.1016/j.cej.2020.125302 - 发表时间:
2020-09 - 期刊:
- 影响因子:15.1
- 作者:
Xiong He;Yan Guo;Xin Li - 通讯作者:
Xin Li
High mechanical strength aluminum foam epoxy resin composite material with superhydrophobic, anticorrosive and wear-resistant surface
表面超疏水、防腐、耐磨的高机械强度泡沫铝环氧树脂复合材料
- DOI:
10.1016/j.surfin.2022.101747 - 发表时间:
2022-01 - 期刊:
- 影响因子:6.2
- 作者:
Yuwei Wang;Baoli Ou;Ping Zhu;Bo Niu;Yan Guo;Qian Zhi - 通讯作者:
Qian Zhi
A Facile, Microwave‐Assisted, Palladium‐Catalyzed Arylation of Acetone.
丙酮的简便、微波辅助、钯催化芳基化。
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
H. Chobanian;Ping Liu;M. Chioda;Yan Guo;L. Lin - 通讯作者:
L. Lin
Sensing Matrix Optimization for Multi-target Localization Using Compressed Sensing in Wireless Sensor Network
无线传感器网络中使用压缩感知的多目标定位的传感矩阵优化
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:4.1
- 作者:
Xinhua Jiang;Ning Li;Yan Guo;Jie Liu;Cong Wang - 通讯作者:
Cong Wang
Yan Guo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yan Guo', 18)}}的其他基金
Partial Differential Equation Methods in Kinetic Theory and Their Applications
运动理论中的偏微分方程方法及其应用
- 批准号:
2106650 - 财政年份:2021
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Partial differential equation methods in kinetic theory and their applications
动力学理论中的偏微分方程方法及其应用
- 批准号:
1611695 - 财政年份:2016
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
PDE Methods in Kinetic Theory and Their Applications
动力学理论中的偏微分方程方法及其应用
- 批准号:
1209437 - 财政年份:2012
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
PDE Methods in Kinetic Theory and Their Applications
动力学理论中的偏微分方程方法及其应用
- 批准号:
0905255 - 财政年份:2009
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
PDE Methods for the Stability Study in Kinetic Theory and Their Applications
动力学理论稳定性研究的偏微分方程方法及其应用
- 批准号:
0603815 - 财政年份:2006
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
PDE Methods for the Stability Study in Kinetic Theory and Their Applications
动力学理论稳定性研究的偏微分方程方法及其应用
- 批准号:
0305161 - 财政年份:2003
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Stability Problems in Plasma Physics, Stellar Dynamics and Classical Field Theory
等离子体物理、恒星动力学和经典场论中的稳定性问题
- 批准号:
9971306 - 财政年份:1999
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Mathematical Sciences: Stability Problems in Plasmas
数学科学:等离子体的稳定性问题
- 批准号:
9623253 - 财政年份:1996
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9508854 - 财政年份:1995
- 资助金额:
$ 39万 - 项目类别:
Fellowship Award
相似海外基金
Partial differential equation: Schrodinger operator and long-time dynamics
偏微分方程:薛定谔算子和长期动力学
- 批准号:
FT230100588 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
ARC Future Fellowships
Learning Partial Differential Equation (PDE) and Beyond
学习偏微分方程 (PDE) 及其他内容
- 批准号:
2309551 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Interplay Between Data and Partial Differential Equation Models Through the Lens of Kinetic Equations
通过动力学方程的视角观察数据和偏微分方程模型之间的相互作用
- 批准号:
2308440 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
CAREER: Exploiting Low-Dimensional Structures in Data Science: Manifold Learning, Partial Differential Equation Identification, and Neural Networks
职业:在数据科学中利用低维结构:流形学习、偏微分方程识别和神经网络
- 批准号:
2145167 - 财政年份:2022
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
CAREER: Partial Differential Equation and Randomness
职业:偏微分方程和随机性
- 批准号:
2042384 - 财政年份:2021
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Partial Differential Equation Methods in Kinetic Theory and Their Applications
运动理论中的偏微分方程方法及其应用
- 批准号:
2106650 - 财政年份:2021
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
General-Domain, Scalable, Accelerated Spectral Partial Differential Equation Solvers and Applications in Simulation and Design
通用域、可扩展、加速谱偏微分方程求解器及其在仿真和设计中的应用
- 批准号:
2109831 - 财政年份:2021
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
CAREER: Partial Differential Equation and Randomness
职业:偏微分方程和随机性
- 批准号:
2203014 - 财政年份:2021
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Global analysis for solution of dispersive partial differential equation with mass subcritical nonlinearity
具有质量次临界非线性的色散偏微分方程解的全局分析
- 批准号:
21H00993 - 财政年份:2021
- 资助金额:
$ 39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Algorithms and Numerical Methods for Optimization with Partial Differential Equation Constraints
偏微分方程约束优化的算法和数值方法
- 批准号:
2110263 - 财政年份:2021
- 资助金额:
$ 39万 - 项目类别:
Standard Grant